
CS 42—Inheritance
Thursday, November 15, 2018

Summary

Today, we’ll talk about inheritance: when to use it, when not to use it, and the Python syntax for
inheritance.

Reusability and extensibility

Recall from last time that we’d like to write code that is reusable (so that other people can make
use of our code, without knowing how the code works) and extensible (so that other people can
add to our code, ideally without knowing how the code works and without modifying the code).

We’ve already seen a few ways to reuse code:

• modules: if code is in modules (i.e., libraries), we can import it

• objects: we build programs from self-contained objects

• composition: we can build a new object that has an existing object as an attribute

Inheritance

Inheritance gives us a way to extend and reuse existing code, without modifying it (and, ideally,
without knowing how it works).

Inheritance enables extensibility in two ways:

• Extend for the benefit of providers: The provider of a new class can define that class by
explaining how it is different from an existing class. (This kind of reuse is subclassing.)

• Extend for the benefit of clients: The client of a type can write code that can be used with
multiple implementations of that type. (This kind of reuse is subtyping.)

In most OO languages, when you use inheritance, you define a subclass and a subtype.

Good programming practice: Prefer composition over inheritance.

Use inheritance only if the existing class and the new class have an is-a relationship. Otherwise,
it’s probably better to use composition: Instead of inheriting from an existing class, a new class
should contain a field whose type is the existing class.

Inheritance in Python

When defining a subclass in Python, write then name of the superclass in parenthesis, after the
name of the subclass:

class NewClass(ExistingClass):

 …

In Python, all classes implicitly inherit from a built-in class called object.

To call a super-class method, use super():

class NewClass(ExistingClass):

 def __init__(self, existingAttribute, newAttribute):

 super().__init__(existingAttribute)

 self.attribute = newAttribute

Python classes can inherit from more than one class, but that’s generally not a good idea. There is 1

one good use case of “multiple inheritance”: mixins. 2

Attribute resolution: instance, class, superclass(es)

When a running program refers to an instance’s attribute, Python will try to look up the value for
that attribute’s name. Python always runs the same algorithm to resolve an attribute’s name:

1. Instance: Look for a binding in the namespace of the instance. If a binding exists for
the attribute’s name, use the corresponding value.

2. Class: If resolution fails for the instance’s namespace, then look for a binding in the
namespace of the instance’s class. If a binding exists for the attribute’s name, use the
corresponding value.

3. Superclass(es): If resolution fails for the instance’s class, then look for a binding in the
namespace(s) of the instance’s superclass(es). If a binding exists for the attribute’s
name, use the corresponding value.

4. Error: If resolution fails for the superclass(es), throw an AttributeError.

 https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem1

 If you’re familiar with Java, mixins often show up when we implement more than one interface.  2

https://en.wikipedia.org/wiki/Mixin

Next time: static types (+ Java)

https://en.wikipedia.org/wiki/Mixin
https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

