
CS 42—Implementing Graphs (in Java)
Thursday, December 6, 2018

Representing graphs

Edge list: store a list of edges (where an edge is stored as a triple of source, destination, weight).

Adjacency list: for each source node, store a list of adjacencies (where an adjacency is stored as a
pair of destination, weight).

Adjacency matrix: a table that, for each pair of nodes, stores the cost of an edge between those
nodes.

Java generics

Java generics is a language feature that allows us parameterize our code with types (just a
functions are a language feature that allows us to parameterize our code with values).

As an example, the Java library defines an interface List<T>, where T is a type parameter that
describes the type of values stored in the list.

Restrictions on type parameters

• A type parameter must be an Object, not a primitive. Fortunately, there are Object versions

of primitive types, e.g., Integer.

• Our code cannot create an instance of a type parameter.

Java Maps

A Java Map is like a Python dictionary.

The Java library defines an interface Map<K, V>, where K is a type parameter that describes the

type of keys used in the map and V describes the type of values stored in the map.

To use Java Maps, we need to import them from the java.util package.

The Java library defines classes HashMap<K, V> (which we often use to store unordered data)
and TreeMap<K, V> (which we often use to store ordered data).

equals and hashCode

So that we can store user-defined types in Maps, we follow some programming conventions:

• If two objects are .equals, their hashCode methods should return the same value.

• Therefore, if we define an equals method, we should define a hashCode method.

• Often, we let Eclipse define both these methods for us.

Next time: review!

