
CS 42—Intro to Java
Tuesday, November 27, 2018

Java differences

Compared to Python, Java has a few key differences:

Java has static types: it requires us to declare the types for all names, including parameters,
return values, local variables, fields (i.e., instance variables—what we called “data attributes”
in Python), etc.

Java requires us to write all declarations in a class.

Values and equality in Java

Primitive types vs objects

There are two types of values in Java: primitive values and objects.

Examples of primitive value types include int, double, boolean, and other builtin types. Java
directly stores primitive values (it’s “in the box”).

Examples of object types include String, LinkedList, other library types, and user-defined
classes. Java stores references to objects.

Reference equality (==) vs value equality (.equals)

Reference equality checks whether two names refer to the same object: x == y.

Value equality calls a method that (typically) checks whether two potentially different objects have

the same value: x.equals(y).

Java Conventions and good programming practices

These conventions and programming practices are not required or checked by Java, and not all of
them are they universally agreed upon by all Java programmers. For consistency, though, we’ll
follow them in CS 42.

• Place field definitions at the top of the class.

• Use Javadoc (/** … */) to document your fields and methods.

• Inside a class, always use this to refer to the members (i.e., fields and methods) of the class.

• Keep your main program separate from your class definitions.

• Usually, fields are private, and the class provides public getters and setters, if needed.

• Write tests first!

• Minimize the number of methods that access fields.

• Write a toString method for every class you implement.

• Provide (preferably through autogeneration) an equals and hashCode method for every
class you implement.

• Always refer to a static field / method via the class. Never refer to a static field / method via an
object.

• Provide good constructors. Explicitly initialize all fields.

Encapsulation mechanisms are a social construct

An encapsulation mechanism is how a language distinguishes between the interface of an object
(i.e., what it can do) and the implementation details of that object (i.e., how the object does its
thing).

Each OOP programming language has its own encapsulation mechanisms (e.g., Java has public
and private), and each differs in how strictly the language enforces the mechanism.

Encapsulation is not about security, and ultimately it’s up to people (not computers) to enforce it.

