
CS 42—Object-oriented terminology
Object-oriented terminology is fraught with ambiguity and contradictions. Different programming
languages might use the same term to mean different things. Furthermore, a programmer might
use object-oriented terms from language A to describe features in language B, even if language B
already uses some of those terms to mean something different :(.

The definitions below are meant to be as language-agnostic as possible. These definitions aren’t
the only ones that a person might use for object-oriented concepts. Experts can, should, and do
differ on the definition of these terms. However, the definitions below are ones that many people
would agree on, and they have been tailored to meet the needs of CS 42.

Terms that aren’t unique to object-oriented programming

software data + behavior, expressed in code

syntax what software looks like (i.e., what the programmer writes)

semantics what software means (i.e., what happens when a program runs)

interface what a piece of software can do

implementation how a piece of software does it

Terms we use to talk about large programs

modularity the ability to use software in a new context (e.g., as part of a larger
program), without knowing how it works

extensibility the ability to modify software (typically to add data/behavior)

reusability an umbrella term for modularity / extensibility

component a reusable piece of software

Object-oriented terms

object a self-referential component 
So, an object:  
 combines data and behavior 
 can be used without knowing how it works 
 can be extended, to add new data / behavior 
 knows about itself, so that it can use its own data / behavior

Objects as modular: interface vs implementation

type a description of an object's interface 
In Java, a type is most like an interface or an abstract class.

class a description of an object's implementation

encapsulation the conventions that programmers use to increase modularity, by
keeping an object’s interface distinct from its implementation.
Some programming languages check whether the conventions have
been followed; others do not. 
Python programmers use an underscore (_) and the language does
not enforce it. Java programmers use public / private, and the
language “enforces” it. 

Objects as software: data and behavior

data member a piece of data (e.g., part of the state of an object) 
Java programmers also call it an “instance variable”.

property a description of a data member’s interface (e.g., the name used to
access data)

field a description of a data member’s implementation (e.g., the way in
which data is stored)

 Many programmers don’t make a distinction between the interface
and the implementation of a data member.

method a behavior 
C++ programmers call it a “member function”.

method signature a description of a behavior's interface: its name, inputs, and outputs

method body a description of a behavior's implementation

member either a data member or a method

constructor a way to initialize an instance of a class 
Usually, the constructor is described as if it were a method, where the
method body initializes the object's fields.

Objects as extensible

subtype a type that extends the interface of another type (its supertype)

subclass a class that extends the implementation of another class (its
superclass)

method overloading extending an interface by adding a behavior with the same name
(but different parameters) than an existing method

method overriding extending an implementation by modifying an existing behavior

polymorphism a generic word that can refer to subtyping—where a more detailed
and specific interface can substituted for a more general one (in
which case, it’s sometimes called subtype polymorphism), or to
method overloading (in which case, it’s sometimes called ad hoc
polymorphism), or to higher-order types (in which case it’s
sometimes called parametric polymorphism or generics)

inheritance extending the implementation of a self-referential component 
In many (but not all) object-oriented languages, if B "inherits" from
A, then B can be both a subclass and a subtype of A. In other words,
inheritance can be used to extend an interface, an implementation,
or both an interface and an implementation.

