
CS 42—Object-Oriented Programming in Python
Tuesday, November 13, 2018

Object-oriented programming (OOP) in Python

Terminology

The terms below are the ones that the Python documentation uses most often, when referring to
object-oriented concepts. These terms are themselves defined using the language-agnostic
definitions from today’s other handout. Note that languages other than Python—as well as some
Python programmers and resources—might use different terms than the ones below.

object any value in Python

class describes the interface and implementation of an object

instance an object that has been created from a class's description

type (of an object) the class used to create that object

method describes a behavior of an instance

data attribute describes a data member of an instance

attribute either a method or data attribute of an instance

class attribute a data attribute defined in the namespace of a class (rather than in
the namespace of an instance of that class). All instances of a class
share the same set of class attributes.

self the name of an object's reference to itself

Gotchas

If you’re used to OOP in other languages these things in Python might seem weird at first.

• All methods (including the constructor) must explicitly declare self as the first parameter. 1

This rule makes it easy to distinguish attributes from local variables, in a method body. (If

you’re used to Java, forgetting to declare self as the first parameter of all your methods might
be your most common mistake, when you start to write object-oriented Python programs.)

• Even though methods explicitly declare a self parameter, method calls don't take an explicit

argument for the instance. Instead, Python makes sure that self is bound to the instance. (If
you’re used to Java, this means that—despite the weirdness of method declarations—Python
method calls work just the same as Java ones.)

• In a method body, we must use self to access attributes of an instance.

• By convention, we use an underscore at the beginning of the name of any attribute that
corresponds to an implementation detail (e.g., data attributes or private helper methods), like

so: self._data. (There are no public and private declarations in Python.)

• The constructor is called __init__ . The __str__ method is like Java’s toString. Both
these methods are examples of “special methods”, and they’re Python’s way of describing
operations (such as initialization or converting to a string) that many instances might want to
support.

 Technically, the first parameter doesn't need to be named self, but the convention is to do so. In fact, it’s so much 1

of a convention in Python programming that you should treat it as rule of the language.

Classes are (you guessed it!) just namespaces

When Python sees a statement that starts like this:

class Stack:
 …class body…

it performs the following steps:

1. Create a new namespace (which we'll refer to as N).

2. Run the class body as if it were a function body, using N as the local (and currently
active) namespace.

3. Bind the name Stack to N in the originally active namespace.

Instances are (yep!) just namespaces

When Python sees a statement like this:

s = Stack()
it performs the following steps:

1. Create a new namespace (which we'll refer to as N).

2. Call Stack.__init__ as if it were a function, binding self to N in the body of the

local namespace for __init__.

3. After the constructor returns, bind the name s to N in the originally active namespace.

Assigning to an attribute creates a binding in the instance’s namespace

When Python sees a statement like this:

s.number = 1000
Python binds number to the value 1000 in s’s namespace.

This statement is an example of an object modification. Most object modifications have the form

name.attribute = expression
where name and attribute are a valid Python variable names, name is bound to an instance, and
expression is a valid Python expression. Note that this rule means that instances are mutable.

Attribute resolution: instance, class, superclass(es)

When a running program refers to an instance’s attribute, Python will try to look up the value for
that attribute’s name. Python always runs the same algorithm to resolve an attribute’s name:

1. Instance: Look for a binding in the namespace of the instance. If a binding exists for
the attribute’s name, use the corresponding value.

2. Class: If resolution fails for the instance’s namespace, then look for a binding in the
namespace of the instance’s class. If a binding exists for the attribute’s name, use the
corresponding value.

3. Superclass(es): If resolution fails for the instance’s class, then look for a binding in the
namespace(s) of the instance’s superclass(es). If a binding exists for the attribute’s
name, use the corresponding value. (Note: we haven’t talked about superclasses yet.)

4. Error: If resolution fails for the superclass(es), throw an AttributeError.

Next time: inheritance

