
CS 42—Python sequences
Tuesday, October 30, 2018

Summary

Today, we’ll learn about sequences in Python. Sequences include lists, tuples, and strings. We’ll
practice how to slice a sequence (which creates a new sequence that contains specific elements of
the original sequence). We’ll also practice list comprehensions, a convenient way to create lists.
Along the way, we’ll also revisit an old friend: functional programming.

First, though, we start with a review of namespaces and talk about how libraries (i.e., modules) are
just fancy namespaces.

Modules: they’re just more namespaces!

Resolving a module’s name

When Python sees a statement like this:

import numbers
Python looks for a file called numbers.py using the following procedure:

1. Look for the file in the current directory. If found, proceed with the import.

2. If there is no such file in the current directory, look in the module search path. If 1

found, proceed with the import.

3. If the file isn’t in the module search path, throw an ImportError.

An import statement binds a name to a namespace

When Python sees the line:

import numbers
it performs the following steps:

1. Create a new namespace (which we'll refer to as N).

2. Run numbers.py as if it were a program, using N as the global (and currently active)
namespace.

3. Bind the name numbers to N in the originally active namespace.

 The module search path is a list of directories that includes the standard-library directories. We almost certainly 1

won’t need to configure this list in CS 42; but if you’re interested, there’s more information here: bit.ly/2e7LyBe.

http://bit.ly/2e7LyBe

Other forms of import also affect bindings

Python provides several forms of the import statement, each of which gives you a certain amount
of control over how names from the module are bound.

from … import …
When Python sees the line:

from numbers import double
it does steps 1 and 2 from above, then it does the following:

3. Copy the binding for double to the originally active namespace.

When Python sees the line:

from numbers import double, triple
it does steps 1 and 2 from above, then it does the following:

3. Copy the bindings for double and triple to the originally active namespace.

from … import *
When Python sees the line:

from numbers import *
it does steps 1 and 2 from above, then it does the following:

3. Copy all the bindings from the module to the originally active namespace.

Good programming practice: Using from … import * is usually considered bad style—we

should specifically import the bindings we need.

import … as …
When Python sees the line:

import numbers as num
it does steps 1 and 2 from above, then it does the following:

3. Bind the name num to N in the originally active namespace.

Slicing a sequence

seq[start : end : step]
Some examples:

>>> values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> values[3:]
[3, 4, 5, 6, 7, 8, 9]
>>> values[3:5]
[3, 4]
>>> values[-1]
9
>>> values[::2]
[0, 2, 4, 6, 8]

List comprehensions

A list comprehension is a short way to describe a list of values. It is syntactic sugar for an
imperative loop that builds up a list one element at a time. It is analogous to functional-
programming constructs such as map and filter.

Good programming practice: use a list comprehension when it can replace a single, non-nested

loop or a call to map or filter. You can also use a list comprehension to replace nested loops;
but you should do so only if the list comprehension is clearer than the loops.

List comprehensions can replace loops / maps.

Code to read all the lines from a data file, removing the newline character at the end of each line.

lines = open('data.txt').readlines()

loop
data = []
for line in lines:
 data.append(line[:-1])

map
data = list(map(lambda line: line[:-1], lines))

list comprehension (preferred)
data = [line[:-1] for line in lines]

List comprehensions can replace loops / filters.

Code to filter all the positive values from a list of values.

loop
positiveValues = []
for value in values:
 if value > 0:
 positiveValues.append(value)

filter
data = list(filter(lambda value: value > 0, values))

list comprehension (preferred)
data = [value for value in values if value > 0]

Next time: algorithmic optimization techniques

