
CS 42—Introduction to Functional Programming & Racket 
Tuesday, October 2, 2018 

Summary 

Today, we will introduce the concept of functional programming and discuss why we’re studying 
it. We’ll also explore a functional programming language called Racket. 

Terminology 

primitive value: In a programming language, a primitive value is a literal value that’s built into the 
language. Examples from Racket include 42 (an integer), 42.0 (a floating point number), and 
"platypus" (a string). 

primitive operation: In a programming language, a primitive operation is a function that’s built 
into the language. Examples from Racket include + (addition) and not (logical negation). 

evaluate: In Racket, “evaluate” means “reduce to a primitive value”. 

expression: An expression is something that can be evaluated. For example 3 + 4 can be evaluated 
to produce 7. 

subexpression: A subexpression is an expression within another expression. For example, in the 
expression 7 * (3 + 4), both 7 and (3 + 4) are subexpressions. 

s-expression: short for “symbolic expression”. In Racket, every expression is an s-expression, 
which is either a primitive value or has the form (op arg1 arg2 … argn), where op and argi can 
themselves be s-expressions. The first subexpression op is treated as a function, and the remaining 
expressions argi are treated as arguments to the function. 

side effect: In programming, a side effect of an expression is something the expression does to 
changes state in a way that persists even after the expression has been evaluated. Examples 
include: modifying a global variable, writing to the screen, and reading from the keyboard. 

referential transparency: An expression has referential transparency if it always evaluates to the 
same result, given the same input. (Think: functions in math: 22 is always 4.) 

Functional programming 

From “Why Functional Programming Matters” by John Hughes (emphasis mine): 

The special characteristics and advantages of functional programming are often summed up more or 
less as follows. Functional programs contain no assignment statements, so variables, once given a 
value, never change. More generally, functional programs contain no side-effects at all. A function 
call can have no effect other than to compute its result. This eliminates a major source of bugs, and 
also makes the order of execution irrelevant—since no side-effect can change an expression’s value, it 
can be evaluated at any time. This relieves the programmer of the burden of prescribing the flow of 
control. Since expressions can be evaluated at any time, one can freely replace variables by their 
values and vice versa—that is, programs are “referentially transparent”. This freedom helps make 
functional programs more tractable mathematically than their conventional counterparts. 



Functional programming in Racket 

Here are some (though not all) of the primitive values and operations in Racket. 

Global constants 
We use define to “bind” a global name to a value in our program (we won’t use this very much). 

(define name expr) 

“Variables” 
They’re called variables, but we won’t vary them (i.e., their values are constant). 

(let* ([var1 expr1] 
       [var2 expr2] 
       … 
        [varn exprn]) 
  body-expr) 

Conditionals 
If you have exactly one condition, use if; otherwise, use cond (which is like if / else if / else). 

(if conditional-expr  
    true-expr 
     false-expr) 

Functions 

(define (function-name parameter1 … parametern) 
   body-expr)

Type of primitive value Example(s)
Integers 42, -5
booleans false, true
floating-point numbers 3.14
rational numbers ⅕
characters #\a, #\b, #\c
strings "platypus"
symbols 'x

Next time: Lists & recursion in Racket

Primitive operation Meaning
+ addition
- subtraction 
* multiplication
/ division
quotient integer division
modulo remainder after integer division 
and logical and
 = numeric equality
equal? general equality of values
> greater than

(cond [condition1 expr1] 
       … 
 [conditionn exprn] 
      [else else-expr])


