
CS 42—Racket functions, programs, testing, and lists 
Thursday, October 4, 2018 

Summary 

Today, we will see some features of Racket that let us write modular, robust code: functions, 
programs, and tests. We will also introduce Racket lists: their structure and the operations we can 
use to create them and use them. Racket lists are an example of an inductive data structure, which 
we can process using recursive algorithms. 

Terminology 

unit test: a way to test small piece of code, e.g., a single function, by describing a particular input 
and the corresponding expected behavior (i.e., the expected output or a particular kind of error). 

test-driven development (TDD): a software-engineering practice where the programmer writes 
small pieces of a program at a time and where the programmer writes tests first, before writing 
code. The programmer repeats this process as the code grows and changes, always making sure 
that the tests pass before moving on to the next feature. 

idiom: in programming, a commonly used way of expressing an idea. When a programming 
language gives us multiple ways to say the same thing, a programming community often adopts an 
idiom—an agreed-upon, single way to say that thing—to promote consistency in code. 

In the second half of today’s class, we’ll be talking about recursion and induction. Generally, we’ll 
use recursion to mean “break things down into smaller pieces” and induction to mean “build things 
up from smaller pieces”. 

recursive algorithm: a procedure for solving a larger instance of a problem by (1) solving one or 
more smaller, similar instances of the problem (called subproblems), then (2) using the solutions 
to the subproblems—plus some basic operations—to solve the original instance of the problem. 

base cases: the parts of a recursive algorithm that compute the solutions to the smallest instances 
of a problem (for example, 0! = 1). 

recursive cases: the parts of a recursive algorithm that create subproblems, then re-invoke the 
algorithm to solve the subproblem, then use the result to solve the original problem (for example, 
4! = 4 * 3!). 

inductive data structure: a data structure that defines (a) the smallest instance(s) of the structure 
and (b) a set of operations for building bigger instances of the structure from smaller instances. 

linked list: an inductive data structure where the smallest list is the empty list. Given an existing 
list and a new element that we want to add to the list, we create a new, bigger list by prepending 
the element to the list (i.e., we add it to the beginning of the list). 

head: (of a non-empty linked list) the first element of the list. 

tail: (of a non-empty linked list) everything after the first element of the list. 

pair or cons-cell: in Racket, a data structure used to implement one “link” in a list. A linked-list 
pair has two values: an element and a link to the tail of the list for which that element is the head. 



Recap: functional programming in Racket 

Global constants 
We use define to “bind” a global name to a value in our program (we won’t use this very much). 

(define name expr) 

“Variables” 
They’re called variables, but we won’t vary them (i.e., their values are constant). 

(let* ([var1 expr1] 
       … 
        [varn exprn]) 
  body-expr) 

Conditionals 
If you have exactly one condition, use if; otherwise, use cond (which is like if / else if / else). 

(if conditional-expr  
    true-expr 
     false-expr) 

Comments 
Comments are any text that appears after a semi-colon (;), until the end of a line. 

Functions 

(define (function-name parameter1 … parametern)  
   body-expr) 

Functions should have a header comment that documents their inputs and output: 

;; fact: computes n! 
;;   inputs: n, a non-negative integer 
;;   outputs: n! 
(define (fact N) 
  (if (= N 0) 
      1 
      (* N (fact (- N 1))))) 

Programs 
We use the definition pane of Dr. Racket to write programs. The first line of our program should be: 

#lang racket 

Imports and exports 
If we want to use code that someone else has written (e.g., a library), we use the require function: 

(require rackunit)   ; gives us access to the testing library 
(require "fact.rkt") ; gives us access to the "fact" file’s code 

If we want to make a function available for someone else’s code, we use the provide function: 

(provide fact) ; this line "exports" the fact function 

(cond [condition1 expr1] 
       … 
 [conditionn exprn] 
      [else else-expr])



Writing and running unit tests in Racket 

We’ll use the rackunit library to write tests in Racket. Here’s an example: 

(check-equal? (fact 0) 1) 
(check-equal? (fact 1) 1) 
(check-equal? (fact 3) 6) 
(check-equal? (fact 4) 24) 
(check-equal? (fact 5) 120) 

For more information about the kinds of tests you can write, see the rackunit documentation. The 
checks that we’ll use most often are: check-equal?, check-not-equal?, check-true, and 
check-false. 

To run the tests, just run the file that contains them. DrRacket will display error messages for any 
tests that fail. If all the tests pass, there will be no output. 

It’s good practice to separate our tests from our code. 

In general, we should write our tests in a different file from our code. That way, we can run the 
code without seeing test output. To keep our code and tests separate, we provide all the functions 
we want to test, and we write a file with only tests that requires the testing library (e.g., 
rackunit) and the file or files that contain our code. 

Note: for this week’s assignment, you don’t need to keep the tests separate from the code; but you 
should still provide all the functions that need testing, so the autograder can access them. See the 
assignment for more details. 

Lists in Racket 

Racket lists are linked lists, where each “link” in the list is a pair of element + list. 

For more list operations, see https://docs.racket-lang.org/reference/pairs.html.

Next time: Functions as data!

list-building operations Meaning
empty or '() constructs an empty list

(cons <value> <list>)
 constructs a new list by prepending an element to an existing list 
 (Careful! If the second element is not a list, then cons does not construct a new list.) 

(list <value1> ... <valueN>)
constructs a list with the given arguments as elements

'(<value1> ... <valueN>)
(append <list1> ... <listN>) append multiple lists into a single list

list-accessing operations Meaning

(empty? <value>) returns true if the argument is an empty list

(first <list>) returns the head of a non-empty list

(rest <list>) returns the tail of a non-empty list

https://docs.racket-lang.org/rackunit/api.html
https://docs.racket-lang.org/reference/pairs.html

