
CS 42—Structural recursion and higher-order functions (HOFs)
Tuesday, October 9, 2018

Summary

Today, we’ll explore recursive algorithms over inductive data structures (specifically, linked lists);
and we’ll learn how write functions that can be used as input to and output from other functions.

Terminology

higher-order function: a function that takes another function as an argument or that returns a
function as its result (or both).

anonymous function: a function without a name, also referred to as a “lambda”.

Notation for describing types

Here is some notation that we’ll use to describe types. You won’t be tested on this notation; it’s just
a useful shorthand that helps us describe the code we write.

Recap: Lists in Racket

Racket lists are linked lists, where each “link” in the list is a pair of element + list.

Notation Meaning

Int, Bool, Char, String, etc. A “primitive” type, i.e., one that’s built into Racket and is not a list or a function.

A → B A function that takes a parameter of type A and results in a value of type B. For example the
not function has type Bool → Bool.

A x B → C
A function that takes one parameter of type A, one parameter of type B, and results in a value of
type C. For example the + function has type Int x Int → Int.

[A] A list of type A, for example the value '(1 2 3) has type [Int].

Operation Meaning

List-building operations

empty or '() constructs an empty list

(cons <value> <list>)
 constructs a new list by prepending an element to an existing list 
 (Careful! If the second element is not a list, then cons does not construct a new list.)

(list <value1> ... <valueN>)
constructs a list with the given arguments as elements

'(<value1> ... <valueN>)
(append <list1> ... <listN>) append multiple lists into a single list

List-accessing operations

(empty? <value>) returns true if the argument is an empty list

(first <list>) returns the head of a non-empty list

(rest <list>) returns the tail of a non-empty list

Common higher-order functions (HOFs)

 
Here are some common higher-order functions that come with Racket. These functions correspond to
common patterns in programming.

(map f L): given a transforming function f and a list L, map produces a new list L' where each

element of L' is the result of applying f to the corresponding element of L. The function f takes a

single element of L and transforms it to a new value. map has type (A → B) x [A] → [B].

(filter f L): given a predicate function f and a list L, filter produces a new list L' that

contains only the elements of L for which the predicate is true. The function f takes a single
element of L and returns either true or false. filter has type (A → Bool) x [A] → [A].

(foldl f seed L): given a folding function f, an initial seed value, and a list L, foldl

reduces L to a single value by repeatedly applying f to the list. The function f takes two
arguments: an element of L and the accumulated value; it returns a new accumulated value.

foldl starts by applying f to the first element of L and the seed, then moves its way towards the
end of the list:

(foldl f seed L) ≣ (f vn (… (f v1 (f v0 seed)) …))

(foldr f seed L): like foldl except it starts by applying f to the last element of L and the

seed, then moves its way towards the front of the list:

(foldr f seed L) ≣ (f v0 (… (f vn-1 (f vn seed)) …))

foldl and foldl have type (A x B → B) x B x [A] → B.

Caution: when f is not associative (e.g., when f is subtraction), foldr and foldl can return
different results.

anonymous functions (i.e., lambdas)

The result of evaluating this expression is a value whose type is a function:

(lambda (parameter1 … parametern) body-expr)

For example, the expression (lambda (x y) (+ x y)) has type Int x Int → Int.

It may be helpful to think of lambda as the most basic way of defining a function, so that this:

(define (f x y)

 (+ x y))

is just syntactic sugar for this:

(define f (lambda (x y) (+ x y)))
We often use anonymous functions when we want to pass an argument or to return a value whose

type is a function, for example: (map (lambda (x) (* x 2)) '(1 2 3))

Next time: Branching recursion (“use it or lose it”) and analysis of programs.

