
CS 42—Sorting (and more analysis) 
Tuesday, November 20, 2018 

Summary 

Today, we’ll talk again about algorithmic strategies (e.g,. use-it-or-lose-it and tabulation) and 
analysis (e.g., recurrence relations and summations). Our goal will be to practice and become 
(even more) comfortable with these techniques. Then, we’ll apply our analysis techniques to some 
algorithms in an exercise called “Sort Detective”. 

Sorting algorithms 

A sorting algorithm takes as input a sequence of values whose elements are comparable (i.e., it’s 
possible to compare any two elements to determine which one is less than the other or whether 
the two elements are equal). The algorithm produces as output the same sequence of elements, 
arranged in order. 

When thinking about sorting, there are several things to take into consideration: 

One problem and many solutions. There are many sorting algorithms, and each solves the 
problem of sorting in a different way. Additionally, for each algorithm, there might be many 
implementations of that algorithm (e.g., in different languages). These differences affect 
performance. 

Is the algorithm in-place? An in-place algorithm uses minimal extra space. Instead, it 
modifies the input, shuffling the elements around until they’re in order. An algorithm that is 
not in-place often creates and returns a new sequence of elements, leaving the original 
unchanged. 

Is the algorithm adaptive? An adaptive sorting algorithm performs better on data that is 
almost sorted. An algorithm that is not adaptive performs the same (or worse) on almost-
sorted data as it does on other kinds of data. In general, we should think about how sensitive 
an algorithm is to variations in its input. 

Performance. How do we measure the performance of an algorithm, in theory and in 
practice? When coming up with a theoretical model, are we trying to model time, or space, or 
energy, or something else? If modeling time, are we counting comparisons, or accesses, or 
something else?

Next time: break (no class)


