
CS 42—Optimization, Part 3; Summations
Thursday, November 8, 2018

Summary

Today, we’ll close out our discussion of optimization by contrasting memoization and tabulation.
We’ll consider questions such as: “When should we optimize?”, and “When is it better to use
memoization over tabulation?”

We’ll also examine a new analysis technique—summations—that helps us analyze loops.

Thinking critically about optimization

We always want to maximize the “goodness” of our code, for several definitions of “good”. Many
definitions of “good” can be placed into one of two categories: properties of the code (e.g., its
readability or maintainability) or properties of the running program (e.g., its correctness or its use
of resources).

We often start by making sure the code is correct and clear. Then, we evaluate whether the
program use significantly more resources than necessary. If so, we try to optimize. To optimize
code, we often must reduce its clarity (which makes it harder to debug and / or modify in the
future) and risk affecting its correctness. To be worth it, we therefore want our optimizations to be
significant: to move programs from “intractable” [e.g., exponential such as 2n] to “tractable” [e.g.,
polynomial such as O(n) or O(n2))]; or from “tractable” to “no problem” [e.g., O(1), or O(log n)].

For the kinds of problems we see in 42, we usually start with a recursive solution. Then, we analyze
the solution, and we determine whether the solution performs redundant work (i.e., computes the
results for the same subproblem multiple times). If the analysis yields anything other than “no
problem” and / or if the solution performs redundant work, we should consider optimizing,
usually by finding a way to trade space for time. Dynamic programming does just that, by saving
the results of subcomputations, e.g., via memoization or tabulation.

Memoization vs tabulation

Memoization and tabulation are complementary techniques, with different effects on our code:

In general, we should try memoization before we try tabulation.

memoization tabulation

preserves clarity of code? yes 
minimal changes to code

no 
significant code rewrites

easily enables further  
time optimizations?

yes 
computes necessary subproblems

no and yes 
computes all subproblems 
tables can be faster than calls

easily enables further  
space optimizations?

no 
must store all computed subproblems

yes 
possible to store only some
computed subproblems

Summations

A summation is a sequence of values to be summed.

Common, simple summations

Converting loops to summations

In Computer Science, we use summations to describe a theoretical model for the cost of a loop.

There is a (mostly) straightforward procedure for translating loops to summations:

1. Choose a cost metric: what are we counting?

2. Work from the “inside out”. For each instance of a (possibly nested) loop:

1. Start with the body of the inner-most loop. Write down the cost of executing the
body once.

2. Write a summation for the loop. First, figure out how many times the loop runs.
Then translate the index, lower bound, and upper bound into a summation that
corresponds to the code. Watch out for loops that don’t increment the index by 1!

3. Keep working outwards, creating summations for loops, until there are no more
nested loops.

Examples
For a cost metric, we’ll use the number of times that quack is called.

Finding a closed form for summations

We can “unroll” the summation, just like we did with recurrence relations. For example:

Next time: object-oriented programming

⇒⇒

Code Cost

platypus.quack() 1

Code Cost

for i in range(N):
 for j in range(N):
 platypus.quack() �

N�1X

i=0

N�1X

j=0

1

Code Cost

for j in range(N):
 platypus.quack()

�

N�1X

j=0

1

i j cost total cost for i

1

1 1

N
2 1

… 1

N 1

2

2 1

N-1
3 1

… 1

N 1

… … … …

N N 1 1

