Checking in

Roughly how much time are you spending on your CS 42 assignment each week?
(Your response)

remove

(define (remove e L)

(if (empty? L)
empty

(let* ([it (first L)]
[lose-it (rest L)]
[lose-it-solution (remove e lose-it)]
[use-it-solution (cons it (remove e lose-it))])
(if (equal? e it)
lose-it-solution
use-it-solution))))

Base case(s):

F(

lose-it solution

solution

$$
\begin{aligned}
& \text { Base case(s): } \\
& e^{\prime}() \Rightarrow{ }^{\prime}()
\end{aligned}
$$

How "good" are these solutions?

Are they efficient?
Do they "cost" more than they should?

Interpreting a theoretical model

Key take-away: it's lossy!
A theory abstracts away certain details.

cost metric:

- corresponds to one "step"
- highlights the essence of the work e.g., multiplications, comparisons, function calls...
- serves as a proxy for an empirical measurement

Instead of measuring time, we count steps. e.g., "This algorithm costs n^{2} multiplications."

Asymptotic Analysis (Big O)

Asymptotic analysis

We're always answering the same question:

How does the cost scale (when we try larger and larger inputs)?

Not:

- Exactly how many steps will it execute?
- How many seconds will it take?
- How many megabytes of memory will it need?

The informal definition of "Big O"

A reasonable upper bound on
(an abstraction of) a problem's difficulty or
a solution's performance, for reasonably large input sizes.

In the limit (for VERY LARGE inputs)

The running time is bounded regardless of the input size.

O(1)

An input twice as big takes no more than twice as long.
$\mathrm{O}(\mathrm{n})$

An input twice as big takes no more than four times as long.
$O\left(n^{2}\right)$

An input one bigger takes no more than twice as long.

If We Only Care About Scalability...

What are the consequences?

Constant factors can be ignored.
n and 6n and 200n scale identically ("linearly")
Small summands can be ignored.
\mathbf{n}^{2} and $\mathbf{n}^{\mathbf{2}} \mathbf{+} \mathbf{n}+999999$ are indistinguishable when n is huge.

Grouping Algorithms by Scalability

takes 6 steps
O (1) takes 1 (big) step no more than 4000 steps
somewhere between 2 and 47 steps, depending on the input
takes 100n + 3 steps
$\mathrm{O}(\mathrm{n})$ takes $\mathrm{n} / 20+10,000,000$ steps anywhere between 3 and 68 steps per item, for n items.
takes $2 n^{2}+100 n+3$ steps
$\mathrm{O}\left(\mathrm{n}^{2}\right) \quad$ takes $\mathrm{n}^{2} / 17$ steps
somewhere between 1 and 40 steps per item, for n^{2} items anywhere between 1 and 7 n steps per item, for n items.

How hard is the problem?

$\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$
O(n!)
$\mathrm{O}\left(2^{\mathrm{n}}\right)$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
O(n $\log (n))$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\sqrt{ } \mathrm{n})$
$\mathrm{O}(\log (\mathrm{n}))$
$\mathrm{O}(1)$

Intractable problems (exponential)

Tractable problems (polynomial)

No problem!

logs aren't scary!

They're our friends.
$\log _{2} N=p \Leftrightarrow 2^{p}=N$
log is the inverse of exponentiation. How many times can I cut N in half?

Can I avoid looking at all the input?!

$$
\begin{aligned}
& \log 2(1)=\mathbf{0} / / 2^{0}=1 \\
& \log 2(2)=\mathbf{1} / / 2^{1}=2 \\
& \log 2(3) \approx 1.58 \\
& \log 2(4)=\mathbf{2} / / 2^{2}=4 \\
& \log 2(5) \approx 2.32 \\
& \log 2(6) \approx 2.58 \\
& \log 2(7) \approx 2.81 \\
& \log 2(8)=\mathbf{3} / / 2^{3}=8
\end{aligned}
$$

How hard are these problems?

cost metric

cost
double
multiply a number by 2

multiplications

sum
sum a list of numbers

half-count divide a positive
number by 2
until you get 1
additions
divisions

How hard are these problems?

cost metric

cost
double
multiply a number by 2
multiplications
$\mathrm{O}(1)$

sum
sum a list of numbers

additions
$\mathrm{O}(\mathrm{n})$
half-count divide a positive
number by 2
until you get 1
divisions
O(log n)

What's the cost, T, for each solution?

```
(define (double n)
    (* n 2))
(define (sum n)
    (if (= n 0)
        0
        (+ n (sum (- n 1)))))
```

(define (half-count n)
(if (= n 1)
0
(+ 1 (half-count (quotient n 2)))))

What's the cost, T , for each solution?

```
(define (double n)
    (* n 2))
(define (sum n)
    (if (= n 0)
        0
        (+ n (sum (- n 1)))))
```

(define (half-count n)
(if $(=\mathrm{n} 1)$
$\quad 0$
$\quad(+1$ (half-count (quotient n 2$))))$)

https://www.simplelongboards.com/boards/platypus/

Recurrence Relations (translating code to math)

Translating recursion to recurrence relations

For a given cost metric: additions

1. Translate the base cases), using specific input sizes How many steps does this base case take?
2. Translate the recursive cases), using input size N Define $\mathrm{T}(\mathrm{N})$ recursively, in terms of smaller cost.
(define (sum n)
(if (= n 0)
0

$$
(+n(\operatorname{sum}(-n 1)))))
$$

Translating recursion to recurrence relations

For a given cost metric: additions

1. Translate the base cases), using specific input sizes How many steps does this base case take?
2. Translate the recursive cases), using input size N Define $T(N)$ recursively, in terms of smaller cost. recurrence relation
(define (sum n)

(if (= | (0) |
| :---: |
| 0 |

$$
\begin{aligned}
& \text { base case } \rightarrow T(0)=0 \\
& \text { input size } \\
& \text { ursine case } \rightarrow T(\mathbb{N})=1+\mathrm{T}(\mathrm{~N}-1)
\end{aligned}
$$

$$
(+n(\operatorname{sum}(-n 1))))
$$

$$
\begin{aligned}
\mathrm{T}(\mathrm{~N}) & =1+\mathrm{T}(\mathbb{N}-\mathbb{1}) \\
& =1+1+\mathrm{T}(\mathbb{N}-2) \\
& =1+1+\mathbb{1}+\mathrm{T}(\mathbb{N}-3) \\
& \cdots \\
& =1+1+1+\ldots 1+\mathrm{T}(\mathbb{N}-\mathbb{N})
\end{aligned}
$$

$$
\begin{aligned}
& =1^{*} \mathbb{1}+T(N-1) \text { closed form } \\
& =2^{*} \mathbb{1}+T(N-2) \quad \text { asymptotic } \\
& =3^{*} \mathbb{1}+T(N-3) \\
& \cdots \\
& =N^{*} \mathbb{1}+T(\mathbb{N}-N)=N \in O(N)
\end{aligned}
$$

Translating recursion to recurrence relations

For a given cost metric: arithmetic operations and comparisons

1. Translate the base cases), using specific input sizes How many steps does this base case take?
2. Translate the recursive cases), using input size N Define $\mathrm{T}(\mathrm{N})$ recursively, in terms of smaller cost. recurrence relation (define (sum n)
(if (= n 0)
0

$$
(+n(\operatorname{sum}(-n 1))))
$$

Translating recursion to recurrence relations

For a given cost metric: arithmetic operations and comparisons

1. Translate the base cases), using specific input sizes How many steps does this base case take?
2. Translate the recursive cases), using input size N Define $T(N)$ recursively, in terms of smaller cost. recurrence relation
(define (sum n)
(if (= n 0)
0
(+ n (sum (- n 1)))))

$$
\begin{aligned}
\mathrm{T}(\mathrm{~N}) & =3+\mathrm{T}(\mathbf{N}-\mathbb{1}) \\
& =3+3+\mathrm{T}(\mathbf{N}-2) \\
& =3+3+3+\mathrm{T}(\mathbb{N}-3) \\
& \ldots \\
& =3+3+3+\ldots 3+\mathrm{T}(\mathbb{N}-\mathbb{N})
\end{aligned}
$$

Translating recursion to recurrence relations

For a given cost metric: divisions

1. Translate the base cases), using specific input sizes How many steps does this base case take?
2. Translate the recursive cases), using input size N Define $T(N)$ recursively, in terms of smaller cost. recurrence relation

(+ 1 (half-count (quotient n 2)))))

Translating recursion to recurrence relations

For a given cost metric: divisions

1. Translate the base cases), using specific input sizes How many steps does this base case take?
2. Translate the recursive cases), using input size N Define $\mathrm{T}(\mathrm{N})$ recursively, in terms of smaller cost. recurrence relation
(define (half-count n)
(if (= n 1)

0

$$
\text { recursive case } \rightarrow T(N)=1+T(N / 2)
$$

(+ 1 (half-count (quotient n 2)))))

$$
\begin{aligned}
\mathrm{T}(\mathrm{~N}) & =1+\mathrm{T}(\mathrm{~N} / 2) \\
& =1+1+\mathrm{T}(\mathrm{~N} / 4) \\
& =1+1+1+\mathrm{T}(\mathrm{~N} / 8) \\
& \ldots \\
& =1+1+1+\ldots 1+\mathrm{T}(\mathrm{~N} / \mathrm{N})
\end{aligned}
$$

$$
\begin{aligned}
& =1+T(N / 2) \quad \text { closed form } \\
& =2+T(N / 4) \\
& =3+T(N / 8) \\
& \ldots
\end{aligned} \quad \text { asymptotic } \quad \text { form }
$$

How hard are these problems?

cost metric

work to do
predicted cost

removenumber of comparisons made	visit every element	$\mathrm{O}(\mathrm{n})$
uniq	number of comparisons made	compare each element to all the other elements
sublists	number of sublists created	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
construct 2^{n} lists	$\mathrm{O}\left(2^{\mathrm{n}}\right)$	

The cost of remove

measured in list-element comparisons

(define (remove e L)
(if (empty? L)
empty
(let* ([it (first L)]
[lose-it (rest L)]
[lose-it-solution (remove e lose-it)]
[use-it-solution (cons it lose-it-solution)])
(if (equal? e it)
lose-it-solution

$$
\begin{aligned}
& \text { use-it-so(ution)))) } \\
& \begin{aligned}
& \mathbb{T}(0)=0 \\
& \mathbb{T}(\mathbf{N})=\mathbb{1}+\mathbb{T}(\mathbf{N}-\mathbb{1}) \quad \mathbb{T}(\mathbf{N})=\mathbb{1}+\mathbb{T}(\mathbf{N}-\mathbb{1}) \\
&=\mathbb{1}+\mathbb{1}+\mathbb{T}(\mathbf{N}-2) \\
& \in \mathbf{O}(\mathbb{N})
\end{aligned}
\end{aligned}
$$

The cost of uniq

(define (uniq L)
 (if (empty? L)

'()
(let* ([it (first L)]
[lose-it (rest L)]
[lose-it-soln (uniq lose-it)]
comparisons [use-it-soln (cons it lose-it-soln)])
(if (member it lose-it-soln)
lose-it-soln
use-it-soln))))

$$
\begin{aligned}
& \mathrm{T}(0)=0 \\
& \mathrm{~T}(\mathrm{~N})=\mathrm{N}-1+\mathrm{T}(\mathrm{~N}-1) \mathrm{T}(\mathrm{~N})
\end{aligned}=\mathrm{N}-1+\mathrm{T}(\mathrm{~N}-\mathbb{1})
$$

The cost of sublists

measured in number of sublists created, i.e., calls to cons and empty (define (sublists L)
(if (empty? L)
(list empty)
(let* ([it (first L)]
[lose-it (rest L)]
[lose-it-soln (sublists lose-it)]
[use-it-soln (map (lambda (l) (cons it l)) lose-it-soln)])
(append use-it-soln lose-it-soln))))

Problems $v s$ solutions

cost metric

work to do
predicted
cost
UloLI cost
remove
number of
comparisons made
uniq

number of
comparisons made

compare each element to all the
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
other elements
sublists $\begin{gathered}\text { number of } \\ \text { sublists created }\end{gathered} \quad$ construct 2^{n} lists $\quad \mathrm{O}\left(2^{n}\right) \quad \mathrm{O}\left(2^{\mathrm{n}}\right)$

