
Firstname Lastname

Checking in

T. 10 / 16

(Your response)

Roughly how much time are you spending on your  
CS 42 assignment each week?

remove

Base case(s):
(define (remove e L)
 (if (empty? L)
 empty
 (let* ([it (first L)]
 [lose-it (rest L)]
 [lose-it-solution (remove e lose-it)]
 [use-it-solution (cons it (remove e lose-it))])
 (if (equal? e it)
 lose-it-solution
 use-it-solution))))

F()Base case(s):

use-it
solution

lose-it
solution

“it” “lose it”

solution

F()Base case(s):

use-it
solution

lose-it
solution

“it” “lose it”

solution

F = removee L

e ‘() ⇒ ‘()
first rest

(cons (F)) (F)

if e ≠ it
then:

else:

How “good”  
are these solutions?

Are they efficient?  
Do they “cost” more than they should?

Interpreting a theoretical model

A theory abstracts away certain details.

cost metric:
• corresponds to one “step”
• highlights the essence of the work

e.g., multiplications, comparisons, function calls…

• serves as a proxy for an empirical measurement

Instead of measuring time, we count steps.
e.g., “This algorithm costs n2 multiplications.”

Key take-away: it’s lossy!

Asymptotic Analysis
(Big O)

Asymptotic analysis

We’re always answering the same question:

Not:
• Exactly how many steps will it execute?
• How many seconds will it take?
• How many megabytes of memory will it need?

How does the cost scale 
(when we try larger and larger inputs)?

The informal definition of “Big O”

A reasonable upper bound on  
(an abstraction of)  

a problem’s difficulty or 
a solution’s performance,  

for reasonably large input sizes.

In the limit (for VERY LARGE inputs)

The running time is bounded 
regardless of the input size. O(1)

An input twice as big takes 
no more than twice as long. O(n)

An input twice as big takes 
no more than four times as long. O(n2)

An input one bigger takes  
no more than twice as long. O(2n)

What are the consequences?

If We Only Care About Scalability…

Constant factors can be ignored.

 n and 6n and 200n scale identically (“linearly”) 

Small summands can be ignored. 
 n2 and n2 + n + 999999 are indistinguishable when n is huge.

Grouping Algorithms by Scalability

takes 6 steps

takes 1 (big) step

no more than 4000 steps

somewhere between 2 and 47 steps, depending on the input

O(1)

takes 100n + 3 steps

takes n/20 + 10,000,000 steps

anywhere between 3 and 68 steps per item, for n items.

O(n)

takes 2n2 + 100n + 3 steps

takes n2/17 steps

somewhere between 1 and 40 steps per item, for n2 items

anywhere between 1 and 7n steps per item, for n items.

O(n2)

How hard is the problem?

O(nn)
O(n!)
O(2n)

O(n3)
O(n2)
O(n log(n))
O(n)

O(√n)
O(log(n))
O(1)

Intractable problems 
(exponential)

Tractable problems 
(polynomial)

No problem!

logs aren’t scary!

log is the inverse of exponentiation.

How many times can I cut N in half?

Can I avoid looking at all the input?!

They’re our friends.

0.00

23.33

46.67

70.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

log

log2(1) = 0 // 20 = 1
log2(2) = 1 // 21 = 2
log2(3) ≈ 1.58
log2(4) = 2 // 22 = 4
log2(5) ≈ 2.32
log2(6) ≈ 2.58
log2(7) ≈ 2.81
log2(8) = 3 // 23 = 8

s-media-cache-ak0.pinimg.com/736x/5d/f7/6d/5df76d1672ccdffc74af2e2bf55330aa.jpg

How hard are these problems?

cost metric cost

double 
multiply a number by 2 multiplications

sum
sum a list of numbers additions

half-count
divide a positive
number by 2 
until you get 1

divisions

How hard are these problems?

cost metric cost

double 
multiply a number by 2 multiplications O(1)

sum
sum a list of numbers additions O(n)

half-count
divide a positive
number by 2 
until you get 1

divisions O(log n)

double 
multiplications

sum 
additions

half-count 
divisions

T(0) n/a

T(1)

T(2)

T(3)

T(4)

…

T(n)

What’s the cost, T, for each solution?
input size

(define (double n)
 (* n 2))

(define (sum n)
 (if (= n 0)
 0
 (+ n (sum (- n 1)))))

(define (half-count n)
 (if (= n 1)
 0
 (+ 1 (half-count (quotient n 2)))))

double 
multiplications

sum 
additions

half-count 
divisions

T(0) 1 0 n/a

T(1) 1 1 0

T(2) 1 2 1

T(3) 1 3 1

T(4) 1 4 2

… … … …

T(n) 1 n ⌊log2 n⌋

What’s the cost, T, for each solution?

(define (double n)
 (* n 2))

(define (sum n)
 (if (= n 0)
 0
 (+ n (sum (- n 1)))))

(define (half-count n)
 (if (= n 1)
 0
 (+ 1 (half-count (quotient n 2)))))

Can we prove it?

input size

https://www.simplelongboards.com/boards/platypus/

https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/
https://www.simplelongboards.com/boards/platypus/

Recurrence Relations 
(translating code to math)

Translating recursion to recurrence relations

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

(define (sum n)
 (if (= n 0)
 0
 (+ n (sum (- n 1)))))

base case →

recursive case →

T(0) = 1

T(N) = 3 + T(N-1)

recurrence relation

input size

For a given cost metric: additions

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

Translating recursion to recurrence relations

T(N) = 1 + T(N-1)
T(N) = 1 + 1 + T(N-2)
T(N) = 1 + 1 + 1 + T(N-3)
T(N) …
T(N) = 1 + 1 + 1 + … 1 + T(N-N)

= 1*1 + T(N-1)
= 2*1 + T(N-2)
= 3*1 + T(N-3)
…
= N*1 + T(N-N) = N ∈ O(N)

(define (sum n)
 (if (= n 0)
 0
 (+ n (sum (- n 1)))))

T(0) = 0

T(N) = 1 + T(N-1)

closed form

base case →

recursive case →

recurrence relation

For a given cost metric: additions

input size

asymptotic  
form

http://bit.ly/2dTUtZt

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

Translating recursion to recurrence relations

(define (sum n)
 (if (= n 0)
 0
 (+ n (sum (- n 1)))))

T(0) = 1

T(N) = 2 + T(N-1)

For a given cost metric: arithmetic operations and comparisons

base case →

recursive case →

recurrence relation

input size

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

Translating recursion to recurrence relations

T(N) = 3 + T(N-1)
T(N) = 3 + 3 + T(N-2)
T(N) = 3 + 3 + 3 + T(N-3)
T(N) …
T(N) = 3 + 3 + 3 + … 3 + T(N-N)

(define (sum n)
 (if (= n 0)
 0
 (+ n (sum (- n 1)))))

T(0) = 1

T(N) = 3 + T(N-1)

= 1*3 + T(N-1)
= 2*3 + T(N-2)
= 3*3 + T(N-3)
…
= N*3 + T(N-N) = 3N +1 ∈ O(N)

closed form

base case →

recursive case →

recurrence relation

For a given cost metric: arithmetic operations and comparisons

input size

asymptotic  
form

https://bit.ly/2ejPth6

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

Translating recursion to recurrence relations

(define (half-count n)
 (if (= n 1)
 0
 (+ 1 (half-count (quotient n 2)))))

For a given cost metric: divisions

base case →

recursive case →

T(1) = 1

T(N) = 3 + T(N-1)

recurrence relation

input size

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

Translating recursion to recurrence relations

(define (half-count n)
 (if (= n 1)
 0
 (+ 1 (half-count (quotient n 2)))))

T(1) = 0

T(N) = 1 + T(N/2)

For a given cost metric: divisions

base case →

recursive case →

recurrence relation

T(N) = 1 + T(N/2)
T(N) = 1 + 1 + T(N/4)
T(N) = 1 + 1 + 1 + T(N/8)
T(N) …
T(N) = 1 + 1 + 1 + … 1 + T(N/N)

= 1 + T(N/2)
= 2 + T(N/4)
= 3 + T(N/8)
…
= log2 N + T(N/N) = log2 N ∈ O(log N)

closed form
asymptotic  

form

input size

http://bit.ly/2e9GPz4

How hard are these problems?

cost metric work to do predicted cost

remove number of  
comparisons made

visit every element O(n)

uniq number of
comparisons made

compare each element
to all the other

elements
O(n2)

sublists number of  
sublists created

construct 2n lists O(2n)

measured in list-element comparisons
The cost of remove
(define (remove e L)
 (if (empty? L)
 empty
 (let* ([it (first L)]
 [lose-it (rest L)]
 [lose-it-solution (remove e lose-it)]
 [use-it-solution (cons it lose-it-solution)])
 (if (equal? e it)
 lose-it-solution
 use-it-solution))))

T(0) = 0
T(N) = 1 + T(N-1)

T(N) = 1 + T(N-1)
 = 1 + 1 + T(N-2)
 ∈ O(N)

measured in list-element comparisons
The cost of uniq

T(0) = 0
T(N) = N-1 + T(N-1)

(define (uniq L)
 (if (empty? L)
 '()
 (let* ([it (first L)]
 [lose-it (rest L)]
 [lose-it-soln (uniq lose-it)]
 [use-it-soln (cons it lose-it-soln)])
 (if (member it lose-it-soln)
 lose-it-soln
 use-it-soln))))

N-1  
comparisons

T(N) = N-1 + T(N-1)
 = N-1 + N-2 + T(N-2)
 ∈ O(N2)

measured in number of sublists created, i.e., calls to cons and empty
The cost of sublists

T(0) = 1
T(N) = 2N-1+ 2N-1 + T(N-1)
 = 2N + T(N-1)

(define (sublists L)
 (if (empty? L)
 (list empty)
 (let* ([it (first L)]
 [lose-it (rest L)]
 [lose-it-soln (sublists lose-it)]
 [use-it-soln (map (lambda (l) (cons it l))
 lose-it-soln)])
 (append use-it-soln lose-it-soln))))

T(N) ∈ O(2N)

2N-1  
cons-es

2N-1  
elements

Problems vs solutions

cost metric work to do predicted
cost UIoLI cost

remove number of  
comparisons made

visit every
element

O(n) O(n)

uniq number of
comparisons made

compare each
element to all the

other elements
O(n2) O(n2)

sublists number of  
sublists created

construct 2n lists O(2n) O(2n)

