
Draw a DFA (or NFA!) that 
describes your typical day.

Full name R. 9/13

Which would you prefer?

1. DFAs

2. NFAs

3. Regular expressions
e.g., 10*1

Which is more powerful?

1. DFAs

2. NFAs

3. Regular expressions
e.g., 10*1

DFAs Regular 
Expressions≡

Regular Languages

NFAs ≡
(Kleene’s theorem)

What kinds of problems
can computers solve?

Decision problems on  
finite, bitstring inputs.

What counts as a problem?

What counts as a computer?

DFAs, NFAs, REs.

Some interesting decision problems
Let’s create a DFA (or NFA or RE) for these

1. L = {aNbN | N > 0} // equality?

2. L = {aNb2N | N > 0} // multiplication?

3. L = {aNbMc(N+M) | N,M > 0} // addition?

Not Regular
we cannot build a DFA that accepts L

this means N repetitions of the character `a`

Recall: Distinguishability theorem

If a set of strings S = {w1, w2, …, wn} is  
pairwise distinguishable for a language L,  
then any DFA that accepts L must have  
at least n states. w1 w2 w3

λ 1 11

w1 λ - 11 1

w2 1 - - 1

w3 11 - - -

L = {w | w’s length is divisible by 3} has a DFA with at least 3 states.

Recall: Distinguishability theorem

A set of strings S = {w1, w2, …} is  
pairwise distinguishable for a language L,  
and the size of S is infinite?!

What if…

L = {aNbN | N > 0}

S = {a, aa, aaa, …}

wi wj z Accept 
wi z

Reject 
wj za aa b ab aab

a aaa b ab aaab

a aaaa b ab aaaab

a aaaaa b ab aaaaab

…and so on for every pair  
of unequal strings in S…

When (not) to use regular languages

Regular languages are useful for

• processes that require a finite number of steps

• recognizing text without needing to remember arbitrary
amounts of previous input

Regular languages are not useful for

• modeling the full power of a computer

What kinds of problems
can computers solve?

Decision problems on  
finite, bitstring inputs.

What counts as a problem?

What counts as a computer?

DFAs, NFAs, REs
can’t solve very many kinds of decision problems!

Formal definition
Deterministic Finite Automaton

A machine M that consists of:

an alphabet Σ

a finite set of states, including:
initial state

accepting state(s)

transitions between states
for every state, every letter in Σ labels one and only one transition

Given a string w, M accepts w  if consuming w causes M to terminate in  an accepting state.

what’s missing?

Formal definition
Turing Machines

A machine M that consists of:

an alphabet Σ

a finite set of states, including:
initial state

accepting state(s)

transitions between states

an infinitely large tape, which can be read or written
the tape is akin to memory

a current location on the tape
called the “read/write head”

Given a string w, M accepts w  if consuming w causes M to terminate in  an accepting state.

Turing Machine
Artist’s conception

can move left or right

tape

blank space, spelled ☐

R/W head

finite-state  
“controller”

4 1

can move left or right

tape R/W head

finite-state  
“controller”

https://youtu.be/E3keLeMwfHY

https://youtu.be/E3keLeMwfHY

Turing Machine
Artist’s conception

can move left or right

tape

blank space, spelled ☐

R/W head

finite-state  
“controller”

4 1

One transition:

C ; C ; R

“If I see a C…”

“…write a C…”

“…and move right…”

A finite-state controller:

Rewrites “CS 41” to “CS 42”

Let’s practice!

What does this machine do for the input aabb?
What does this machine do for the input abb?
What does this machine do in general?

cdn1.medicalnewstoday.com/content/images/articles/322/322156/platypus-swimming.jpg

https://www.medicalnewstoday.com/articles/322156.php

Turing Machines FTW!

(1) L = {aNbN | N > 0} // equality?

(2) L = {aNb2N | N > 0} // multiplication?

(3) L = {aNbMc(N+M) | N,M > 0} // addition?

So far, all known computational devices are equivalent to
Turing Machines…

Quantum computers
Molecular computers
Parallel computers
Integrated circuits
Water-based computation
…

What kinds of problems
can computers solve?

Decision problems on  
finite, bitstring inputs.

What counts as a problem?

What counts as a computer?

Turing Machines can solve  
way more problems than DFAs!

Turing Machines FTW?

Here’s a strategy for doing every HW assignment in every class:

(1) Spend a week writing a program that takes as input a description
of any assignment and outputs the solution.

(2) There is no step two.

Turing Machines FTW?

Here’s a strategy for winning mathematical fame and glory:

(1) Write a program that searches for an even integer n greater than
2 that is not the sum of two prime numbers. The program halts
when it finds n. 
This program looks for a counter-example to the unproven Goldbach Conjecture.

(2) Write a second program that takes as input the first program (!),
then returns false if that program will ever halt and true
otherwise.

upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg

David 
Hilbert

We must know.
We will know.

http://upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg

Kurt
Gödel

plus.maths.org/issue39/features/dawson/Godel_Einstein.jpgupload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg

David 
Hilbert

We must know.
We will know. No.

http://plus.maths.org/issue39/features/dawson/Godel_Einstein.jpg
http://upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg

This sentence is false.

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

“undecidable” means:  
  
“We cannot create a Turing machine  
that can tell us whether every possible  
string is in this language or not.”

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

Proof sketch (proof by contradiction):

1. Assume that Halting Problem is decidable.

2. Show that this assumption leads to a contradiction.

3. Therefore the assumption (that the HP is decidable) is false.

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.

MHP

<program>, <input>

Yes

No

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

MHP

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

MHP

MLOOP

<input>

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

MHP
MLO

Yes

<program>, <input>

MFLIP

<input>

The Halting Problem is undecidable

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

MHP
MLO

Yes

<input>, <input>

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

MFLIP

The Halting Problem is undecidable

MHP
MLO

Yes

<MFLIP> <MFLIP>, <MFLIP>

Data≡Programs

