Draw a DFA (or NFA!) that describes your typical day.

Full name

Which would you prefer?

1. DFAs

2. NFAs
3. Regular expressions
e.g., 10*1

Which is more powerful?

1. DFAs

2. NFAs
3. Regular expressions

$$
\text { e.g., } 10 * 1
$$

Regular Languages

NFAs $=$ DFAs $=$ Regular
 Expressions

(Kleene's theorem)

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of problems

 can computers solve? $D \not A_{s}, N \not A_{s}, R E s$.What counts as a computer?

Some interesting decision problems

Let's create a DFA (or NFA or RE) for these

1. $\mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{N} \mid N>0\right\}$
// equality?
this means N repetitions of the character 'a'
2. $\mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{2 N} \mid N>0\right\}$
// multiplication?
3. $\mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{M} \mathbf{C}^{(N+M)} \mid N, M>0\right\} \quad / /$ addition?

Not Regular

we cannot build a DFA that accepts L

Recall: Distinguishability theorem

If a set of strings $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is pairwise distinguishable for a language L , then any DFA that accepts L must have at least n states.

		w_{1}	w_{2}	w_{3}
	$\boldsymbol{\lambda}$	$\mathbf{1}$	$\mathbf{1 1}$	
w_{1}	$\boldsymbol{\lambda}$	-	11	1
w_{2}	$\mathbf{1}$	-	-	1
w_{3}	$\mathbf{1 1}$	-	-	-

$\mathrm{L}=\{w \mid w$'s length is divisible by 3$\}$ has a DFA with at least 3 states.

Recall: Distinguishability theorem

 What if...A set of strings $S=\left\{w_{1}, w_{2}, \ldots\right\}$ is pairwise distinguishable for a language L , and the size of S is infinite?!

$$
\begin{aligned}
& \mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{N} \mid N>0\right\} \\
& \mathrm{S}=\{\mathrm{a}, \mathrm{aa}, \mathrm{aaa}, \ldots\}
\end{aligned}
$$

$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{w}_{\boldsymbol{j}}$	\boldsymbol{z}	Accept Reject	
a	aa	b	ab	aab
a	aaa	b	ab	aaab
a	aaaa	b	ab	aaaab
a	aaaaa	b	ab	aaaaab
of unequal strings in $\mathrm{S} . .$.				

When (not) to use regular languages

Regular languages are useful for

- processes that require a finite number of steps
- recognizing text without needing to remember arbitrary amounts of previous input

Regular languages are not useful for

- modeling the full power of a computer

What counts as a problem?

What kinds of problems

can computers solve?

 D IAs $^{\prime}$, NFAs, REs can't solve very many kinds of decision problems!What counts as a computer?

Deterministic Finite Automaton

Formal definition
A machine M that consists of:
an alphabet Σ
a finite set of states, including: initial state
accepting state(s)

Given a string w, M accepts w if consuming w causes M to terminate in an accepting state.
transitions between states
for every state, every letter in Σ labels one and only one transition
what's missing?

Turing Machines

A machine M that consists of:
an alphabet Σ
a finite set of states, including: initial state
accepting state(s)
transitions between states
an infinitely large tape, which can be read or written the tape is akin to memory
a current location on the tape called the "read/write head" an accepting state.

$$
x_{1}
$$

of:

Given a string w,
M accepts w
Given a string w,
M accepts w
if consuming w causes
M to termin M to terminate in
Given a string w,
M accepts w
erminate in
es
\square
.

Turing Machine
Artist's conception

R/W head

https://youtu.be/E3keLeMwfHY

Turing Machine
Artist's conception

One transition:
"If I see a C..."

A finite-state controller:

Rewrites "CS 41 " to "CS 42 "

Let's practice!

What does this machine do for the input aabb? What does this machine do for the input abb? What does this machine do in general?

Turing Machines FTW!

(1) $\mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{N} \mid N>0\right\}$
(2) $\mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{2 N} \mid N>0\right\}$
// multiplication?
(3) $\mathrm{L}=\left\{\mathrm{a}^{N} \mathrm{~b}^{M} \mathrm{C}^{(N+M)} \mid N, M>0\right\}$
// addition?
So far, all known computational devices are equivalent to Turing Machines...

Quantum computers
Molecular computers
Parallel computers
Integrated circuits
Water-based computation

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of problems

can computers solve?

Turing Machines can solve way more problems than DIAs!

What counts as a computer?

Turing Machines FTW?

Here's a strategy for doing every HW assignment in every class:
(1) Spend a week writing a program that takes as input a description of any assignment and outputs the solution.
(2) There is no step two.

Turing Machines FTW?

Here's a strategy for winning mathematical fame and glory:
(1) Write a program that searches for an even integer n greater than 2 that is not the sum of two prime numbers. The program halts when it finds n.
This program looks for a counter-example to the unproven Goldbach Conjecture.
(2) Write a second program that takes as input the first program (!), then returns false if that program will ever halt and true otherwise.

This sentence is false.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$
"undecidable" means:
"We cannot create a Turing machine
that can tell us whether every possible string is in this language or not."

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

Proof sketch (proof by contradiction):

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.
3. Therefore the assumption (that the HP is decidable) is false.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

1. Assume that Halting Problem is decidable.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

The Halting Problem is undecidable

$\mathrm{L}=\{$ All programs that halt and give an answer $\}$

1. Assume that Halting Problem is decidable.
2. Show that this assumption leads to a contradiction.

Programs \equiv Data

