Draw a DFA (or NFA!) that describes your typical day.

Which would you prefer?

- 1. DFAs
- 2. NFAs
- 3. Regular expressions e.g., 10*1

Which is more powerful?

- 1. DFAs
- 2. NFAs
- 3. Regular expressions e.g., 10*1

Regular Languages

$NFAS \equiv DFAS \equiv \frac{\text{Regular}}{\text{Expressions}}$

(Kleene's theorem)

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of **problems** can **computers** solve?

DFAs, NFAs, REs.

What counts as a computer?

Some interesting decision problems

Let's create a DFA (or NFA or RE) for these

- 1. $L = \{a^N b^N | N > 0\}$ // equality? this means N repetitions of the character `a`
- 2. $L = \{a^N b^{2N} | N > 0\}$ // multiplication?
- 3. $L = \{a^N b^M c^{(N+M)} | N, M > 0\}$ // addition?

Recall: Distinguishability theorem

If a set of strings $S = \{w_1, w_2, ..., w_n\}$ is pairwise distinguishable for a language L, then any DFA that accepts L must have at least *n* states.

 W_3

 $L = \{w \mid w' \text{ s length is divisible by 3} \}$ has a DFA with at least 3 states.

Recall: Distinguishability theorem

- A set of strings $S = \{w_1, w_2, ...\}$ is
- pairwise distinguishable for a language L, and the size of S is infinite?!

$$\mathbf{L} = \{\mathbf{a}^N \mathbf{b}^N \mid N > \mathbf{0}\}$$

$$S = \{a, aa, aaa, ...\}$$

<i>w</i> _i	W j	z	Accept	Reject
а	аа	b	ab	aab
а	aaa	b	ab	aaab
а	aaaa	b	ab	aaaab
а	aaaaa	b	ab	aaaaab

...and so on for **every** pair of unequal strings in S...

When (not) to use regular languages

Regular languages **are** useful for

- processes that require a finite number of steps
- recognizing text without needing to remember arbitrary amounts of previous input

Regular languages are **not** useful for

• modeling the full power of a computer

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of problems can computers solve? DFAs, NFAs, REs can't solve very many kinds of decision problems!

What counts as a computer?

Deterministic Finite Automaton

Formal definition

A machine *M* that consists of: an **alphabet** Σ

a finite set of **states**, including:

initial state
accepting state(s)

transitions between states

for every state, every letter in $\boldsymbol{\Sigma}$ labels one and only one transition

A machine M that consists of: an **alphabet** Σ

a finite set of states, including:

initial state
accepting state(s)

transitions between states

an infinitely large **tape**, which can be read or written the tape is akin to memory

a **current location** on the tape called the "read/write head"

Turing Machine

Artist's conception

https://youtu.be/E3keLeMwfHY

Turing Machine

Artist's conception

blank space, spelled 🗆 tape 4 R/W head finite-state controller can move left or right

One transition:

A finite-state controller:

Rewrites "CS 41" to "CS 42"

Let's practice!

What does this machine do for the input aabb? What does this machine do for the input abb? What does this machine do in general?

cdn1.medicalnewstoday.com/content/images/articles/322/322156/platypus-swimming.jpg

Turing Machines FTW!

(1) $L = \{a_N b_N | N > 0\}$ // equality?

(2) $L = \{a^N b^{2N} | N > 0\}$ // multiplication?

(3) $L = \{a^N b^M C^{(N+M)} | N, M > 0\}$ // addition?

So far, all known computational devices are equivalent to Turing Machines...

Quantum computers Molecular computers Parallel computers Integrated circuits Water-based computation

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of **problems** can **computers** solve?

Turing Machines can solve way more problems than DTAs!

What counts as a computer?

Turing Machines FTW?

Here's a strategy for doing every HW assignment in every class:

(1) Spend a week writing a program that takes as input a description of any assignment and outputs the solution.

(2) There is no step two.

Turing Machines FTW?

Here's a strategy for winning mathematical fame and glory:

(1) Write a program that searches for an even integer *n* greater than
 2 that is <u>not</u> the sum of two prime numbers. The program halts when it finds *n*.

This program looks for a counter-example to the unproven *Goldbach Conjecture*.

(2) Write a second program that takes as input the *first* program (!), then returns false if that program will ever halt and true otherwise.

We must know. We will know.

David Hilbert

David Hilbert

plus.maths.org/issue39/features/dawson/Godel_Einstein.jpg

Kurt Gödel

This sentence is false.

L = {All programs that halt and give an answer}

"undecidable" means:

"We cannot create a Turing machine that can tell us whether every possible string is in this language or not."

- L = {All programs that halt and give an answer}
- Proof sketch (proof by contradiction):
 - 1. Assume that Halting Problem is decidable.
 - 2. Show that this assumption leads to a contradiction.
 - 3. Therefore the assumption (that the HP is decidable) is false.

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.

- L = {All programs that halt and give an answer}
- 1. Assume that Halting Problem is decidable.
- 2. Show that this assumption leads to a contradiction.

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.

2. Show that this assumption leads to a contradiction.

- L = {All programs that halt and give an answer}
- 1. Assume that Halting Problem is decidable.
- 2. Show that this assumption leads to a contradiction.

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.

2. Show that this assumption leads to a contradiction.

L = {All programs that halt and give an answer}

1. Assume that Halting Problem is decidable.

2. Show that this assumption leads to a **contradiction**.

$Programs \equiv Data$