

WACM
 HMC chapter of $\mathbf{a C M}=\mathbf{M}$

- Company sponsored tech talks and events
- Resume Workshops / Interview Prep
- Dinners with cool profs (like the one standing in front of you!)
- Meet other students in CS!

Students of all gender identities are welcome!
Join by filling out a quick form at tinyurl.com/wacm-5c Visit us at the HMC club fair and the 5 c turf dinner.

How would you tell if a binary number is even or odd?

Full name
R. 9/6

Quick binary refresher

A bit is a binary digit: 0 or 1 .
A bitstring is a sequence of zero or more bits.
We can assign a numeric value to non-empty bitstrings.

0	0		0		0		0
2^{7}	2^{6}	25	24	23	2^{2}	21	20
128	64	32	16	8	4	2	1
		32	+	8	+	2	$=$

Motivating questions for this week and next

What kinds of problems

can computers solve?

What do we mean by "problem"?

How do we describe the problem?

How do we recognize a solution?

Decision problem

A formal model for all problems
A yes-or-no question.
Ask yourself: can I encode all problems as yes-or-no questions?!

What do we mean by "computer"?

www.dagrier.net/wp-content/uploads/2013/04/grier.when-computers-were-human-259x300.jpg

Annie Easley

What do we mean by "computer"?

Operating System (CP/M, DOS, Windows 8, Windows 10, MacOS, iOS 10, iOS 11,...)

Processor clock rate ($1 \mathrm{MHz}, 3.2 \mathrm{MHz}, 2.8 \mathrm{GHz}, 8.79433 \mathrm{GHz}, \ldots$)

Memory capacity (4KB, 64KB, 1MB, 8MB, 4GB, 512GB, ...)
Power source (electricity, natural gas, solar, dilithium, ...)

Construction materials (silicon, graphene, legos, ...)

Programming language (Python, Java, Racket, ...)

Architecture (single core, multicore, pipelined, out-of-order, branch predicting, GPU, VLIW, ...)
Data representation (binary, trinary, ASCII, Unicode, ...)
we need a
"computational model"

Today's model: a state machine

Reads the input string one symbol at a time. we will often use bitstrings for the input

Has a set of possible "configurations" (states).
Has rules for how to transition from one state to another. based on current state and current input symbol

Accepts ("yes") or rejects ("no"), based on the input so far.

What is a state?

What are the "states" of this system?

Finite state machines

A finite state machine (FSM) is a state machine with:

- a predetermined, finite-sized set of states think of each state as a subtask
- a predetermined, finite-sized alphabet of valid input characters we use the capital greek letter "Sigma" to denote the alphabet: $\boldsymbol{\Sigma}$
- a set of rules that describe transitions from each state for each character so that each state knows what to do for any possible input character
- a designated initial state the state that the machine is in when it starts
- a set of accepting states
which determine the conditions under which the machine says "yes"

Common vocabulary for state machines

computer scientists say

Deterministic Finite Automaton (DFA)
engineers say
Finite State Machine (FSM)
deterministic: each state has one (and only one) transition for each possible input character.
finite: there are a finite number of states. automaton: it operates under its own power.

We'll use both "DFA" and "FSM", interchangeably.

The "automation" part of DFAs

Reads the input string one symbol at a time.
Has a finite set of possible "configurations" (states).
Has rules for how to proceed from one state to another.

based on current state and current input

Accepts ("yes") or rejects ("no"), based on the input so far.
Stops when it has read all the input.

DFAs describe a language-a set of strings

 it's all the inputs accepted by the DFAWhat language is described by this DFA?
$L=\{1,01,001,011, \ldots\}$
$\mathrm{L}=\{\boldsymbol{w} \mid w$ ends in a 1$\}$
"L is all strings w such that w ends in a 1 "
(Bitstrings that encode) odd numbers

DFAs describe a language-a set of strings

 it's all the inputs accepted by the DFAWhat language is described by this DFA?

$$
\begin{gathered}
\text { empty string } \\
L=\{\lambda, 0,00,000, \ldots\}
\end{gathered}
$$

$L=\{w \mid w h a s ~ n o ~ 1 s\}$

Finite states $=$ finite memory .

What are we "remembering" about the input so far) in each state?

Draw these DFAs

It's okay if you don't finish the third one.
(1) $L=\{w \mid w$ contains at least two $1 s\}$
(2) $L=\{w \mid$ the third bit in w is a 1$\}$
(3) $L=\{w \mid$ the number of $0 s$ in w is a multiple of 3$\}$

Write test cases first!!!!
At least three strings accepted by the DFA. At least three strings rejected by the DFA.

JFLAP-a tool for making automata

(1) $L=\{w \mid w$ contains at least two $1 s\}$

Write test cases first!!!!
At least three strings accepted by the DFA. At least three strings rejected by the DFA.

JFLAP-a tool for making automata

(2) $\mathrm{L}=\{\mathrm{w} \mid$ the third bit in w is a 1$\}$

Write test cases first!!!!
At least three strings accepted by the DFA. At least three strings rejected by the DFA.

JFLAP-a tool for making automata

(2) $L=\{w \mid$ the number of $0 s$ in w is a multiple of 3$\}$

Write test cases first!!!!
At least three strings accepted by the DFA. At least three strings rejected by the DFA.

DFAs are useful-they're everywhere!

Ell FSM
Nathan Milie:
votiou Y.sweratran

All-DNA finite-state automata with finite memory

${ }^{a}$ Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel; ${ }^{\text {b }}$ Chemistry Department, B6c, University of Liège, 4000 Liège, Belgium; and 'Department of Chemistry and Biochemistry, Crump Institute for Molecular Imaging, and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095

Contributed by Raphael D. Levine, October 25, 2010 (sent for review August 6, 2010)
Biomolecular logic devices can be applied for sensing and nanomedicine. We built three DNA tweezers that are activated by the inputs $\mathrm{H}^{+} / \mathrm{OH}^{-} ; \mathrm{Hg}^{2+}$ /cysteine; nucleic acid linker/complementary antilinker to yield a 16 -states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence

First assignment

Available online later tonight-watch for Piazza message
Due next Tuesday at 11:59pm

- You can use 1 (of 3) "Euros" to turn in 24 hours later, no need to tell us - I drop your lowest assignment score

Use JFLAP to make DFAs
Remember: pair-programming, office hours, tutoring hours
Test and turn in online-watch for Piazza message

