
Join
● Company sponsored tech talks and events

● Resume Workshops / Interview Prep

● Dinners with cool profs (like the one standing in front of you!)

● Meet other students in CS!

Students of all gender identities are welcome!

Join by filling out a quick form at tinyurl.com/wacm-5c

•Company sponsored tech talks and events
•Resume Workshops / Interview Prep
•Dinners with cool profs (like the one standing in front of you!)
•Meet other students in CS!

Students of all gender identities are welcome!

Join by filling out a quick form at tinyurl.com/wacm-5c

Visit us at the HMC club fair and the 5c turf dinner.

https://tinyurl.com/wacm-5c

How would you tell if a binary number 
is even or odd?

Full name R. 9/6

Quick binary refresher

0 0 1 0 1 0 1 0
27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

32 + 8 + 2 = 42

A bit is a binary digit: 0 or 1.
A bitstring is a sequence of zero or more bits.
We can assign a numeric value to non-empty bitstrings.

Motivating questions for this week and next

What kinds of problems  
can computers solve?

What do we mean by “problem”?

we need a  
“formal model”

How do we describe the problem?

How do we recognize a solution?

Decision problem
A formal model for all problems

A yes-or-no question.
Ask yourself: can I encode all problems as yes-or-no questions?!

What do we mean by “computer”?

Annie Easley
www.dagrier.net/wp-content/uploads/2013/04/grier.when-computers-were-human-259x300.jpg

https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2017/01/20120618/annie-easley-800x649.jpg

What do we mean by “computer”?
Operating System (CP/M, DOS, Windows 8, Windows 10, MacOS, iOS 10, iOS 11,…)

Processor clock rate (1 MHz, 3.2MHz, 2.8 GHz, 8.79433 GHz, …)

Memory capacity (4KB, 64KB, 1MB, 8MB, 4GB, 512GB, …)

Power source (electricity, natural gas, solar, dilithium, …)

Construction materials (silicon, graphene, legos, …)

Programming language (Python, Java, Racket, …)

Architecture (single core, multicore, pipelined, out-of-order, branch predicting, GPU, VLIW, …)

Data representation (binary, trinary, ASCII, Unicode, …)

we need a  
“computational model”

Today’s model: a state machine

Reads the input string one symbol at a time.
we will often use bitstrings for the input

Has a set of possible “configurations” (states).

Has rules for how to transition from one state to another.
based on current state and current input symbol

Accepts ("yes") or rejects ("no"), based on the input so far.

What is a state?

What are the "states" of this system?

Title Text

Finite state machines

A finite state machine (FSM) is a state machine with:

• a predetermined, finite-sized set of states
think of each state as a subtask

• a predetermined, finite-sized alphabet of valid input characters
we use the capital greek letter “Sigma” to denote the alphabet: 𝚺

• a set of rules that describe transitions from each state for each character
so that each state knows what to do for any possible input character

• a designated initial state
the state that the machine is in when it starts

• a set of accepting states
which determine the conditions under which the machine says “yes”

Common vocabulary for state machines
computer scientists say
Deterministic Finite Automaton
(DFA)

engineers say
Finite State Machine
(FSM)

We’ll use both “DFA” and “FSM”, interchangeably.

deterministic: each state has one (and only
one) transition for each possible input
character.

finite: there are a finite number of states.

automaton: it operates under its own power.

The “automation” part of DFAs
Reads the input string one symbol at a time.

Has a finite set of possible “configurations” (states).

Has rules for how to proceed from one state to another.
based on current state and current input

Accepts ("yes") or rejects ("no"), based on the input so far.

Stops when it has read all the input.

“accepting” state  
(double circle)

initial state
(input funnel)

transition  
(based on next piece of input)

DFAs describe a language—a set of strings
it’s all the inputs accepted by the DFA

What language is described by this DFA?

L = {1, 01, 001, 011, …}

L = {w | w ends in a 1}
“L is all strings w such that w ends in a 1”

(Bitstrings that encode) odd numbers

DFAs describe a language—a set of strings
it’s all the inputs accepted by the DFA

What language is described by this DFA?

L = {λ, 0, 00, 000, …}

L = {w | w has no 1s}

empty string

Finite states = finite memory.

What are we “remembering” about the input so far) in each state?

Ben Wiedermann
Note: In class, this slide had an error: the language definitions didn’t match the DFA.

I updated the slide and changed the *DFA* so that it matches the language definitions, because I wanted us to see a DFA that acccepts the empty string.�

Draw these DFAs
It’s okay if you don’t finish the third one.

(1) L = {w | w contains at least two 1s}

(2) L = {w | the third bit in w is a 1}

(3) L = {w | the number of 0s in w is a multiple of 3}

sample

Write test cases first!!!!
At least three strings accepted by the DFA.

At least three strings rejected by the DFA.

JFLAP—a tool for making automata

(1) L = {w | w contains at least two 1s}

Write test cases first!!!!
At least three strings accepted by the DFA.

At least three strings rejected by the DFA.

JFLAP—a tool for making automata

(2) L = {w | the third bit in w is a 1}

Write test cases first!!!!
At least three strings accepted by the DFA.

At least three strings rejected by the DFA.

JFLAP—a tool for making automata

(2) L = {w | the number of 0s in w is a multiple of 3}

Write test cases first!!!!
At least three strings accepted by the DFA.

At least three strings rejected by the DFA.

DFAs are useful—they’re everywhere!

All-DNA finite-state automata with finite memory
Zhen-Gang Wanga,1, Johann Elbaza,1, F. Remacleb, R. D. Levinea,c,2, and Itamar Willnera,2

aInstitute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel; bChemistry Department, B6c, University of Liège, 4000 Liège, Belgium;
and cDepartment of Chemistry and Biochemistry, Crump Institute for Molecular Imaging, and Department of Molecular and Medical Pharmacology,
University of California, Los Angeles, CA 90095

Contributed by Raphael D. Levine, October 25, 2010 (sent for review August 6, 2010)

Biomolecular logic devices can be applied for sensing and nano-
medicine. We built three DNA tweezers that are activated by
the inputs Hþ∕OH−; Hg2þ∕cysteine; nucleic acid linker/complemen-
tary antilinker to yield a 16-states finite-state automaton. The
outputs of the automata are the configuration of the respective
tweezers (opened or closed) determined by observing fluorescence
from a fluorophore/quencher pair at the end of the arms of the
tweezers. The system exhibits a memory because each current
state and output depend not only on the source configuration
but also on past states and inputs.

biocomputing ∣ DNA machines ∣ sensor ∣ chemical recognition ∣
chemical input

Supramolecular systems that can be instructed by external
triggers and interact with biological systems attract growing

interest. Such combined assemblies hold the promise for future
nano-medical and bioengineering applications (1–3). In particu-
lar, the base sequence in DNA enables recognition and self-
assembly. We use these properties to operate a molecular assem-
bly of “tweezers” that can be opened or closed by external inputs.
The machine processes the inputs depending on its internal state
and delivers an output. Such a machine is defined as an automa-
ton. Indeed, the structural and functional information encoded
in biomolecules such as DNA (4), DNAzymes (5, 6), ribozymes
(7), DNA/protein hybrids (8), and enzymes (9) has been imple-
mented to develop logic gates (10) and finite automata (11). The
use of these logic devices to control gene expression (12), and to
process intracellular information (13), was demonstrated. Also,
programmed nucleic acid structures were used to design DNA
machines (14–17), and supramolecular DNA nanostructures per-
forming “walker,” (18–22), “tweezers” (23–26), and “gear” (27)
functionalities were reported, using nucleic acid strands, apta-
mer–substrate complexes (28), or pH (29, 30) as triggers (inputs)
for the activation of DNA machinery devices. Previous studies
described DNA–protein automata, and the advantages of an
all-DNA automata device were theoretically addressed (31).
The present study presents unique enzyme-free DNA automata,
based on the use of new chemical inputs (Hg2þ∕cysteine and
Hþ∕OH−) that require detailed design of the recognizing nucleic
acids. There are eight possible configurations of the three twee-
zers (open/closed for each). A configuration is deemed an output
of the system and is determined by reading out the fluorescence
signals of the tweezers. These configurations change when inputs
are provided; however, the next configuration will depend not
only on the most recent input but on the past input history. There-
fore we introduce the notion of “state” that, combined with the
input, will uniquely determine the output and the next state. The
states are hidden, but they can be unambiguously assigned at each
step; as shown below, 16 states suffice to fully describe history-
dependent response of the system. Such response is found in
complex systems. For example, acquired magnetization of a
ferromagnetic material reflects its past physical treatment.

Results and Discussion
Fig. 1A presents the elements of the device. It consists of three
tweezers, α, β, γ, and six inputs (pH-acidic or basic; Hg2þ ions
or cysteine ligands complexing Hg2þ ions; and two complemen-

tary single stranded nucleic acids acting as linker/antilinker units).
Each of the tweezers may exist in the closed configuration “0” or
the open structure configuration “1.” Thus, the three tweezers
may generate eight different configurations (outputs); two config-
urations where all three tweezers are closed (000) or open (111),
respectively, three configurations consisting of one open tweezers
and two closed, and three configurations that include two open
tweezers and one closed. The general principles of the input-trig-
gered opening or closing of the tweezers and the readout of the
tweezers configuration are depicted in Fig. 1B. The tweezers con-
sist of two nucleic acid arms (I and II) bridged by a “reporter”
nucleic acid III that includes at its ends a fluorophore/quencher
pair. The arms I and II are further bridged by complementary base
pairing with the nucleic acid linker IV to form the closed tweezers.
The domains Ia and IIb in the arms I and II provide the recogni-
tion sites for the respective inputs.While the inputs of type I1 open
the tweezers and release the linker, the addressing of the open
tweezers with inputs of type I2 results in the association of the
linker to the arms and in the closure of the tweezers. The fluor-
escence resonance energy transfer (FRET) between the fluoro-
phore and quencher transduces the configuration of the tweezers.
While the proximity of the fluorophore/quencher pair in the
closed tweezers leads to effective quenching and low fluorescence
of the fluorophore, in the open configuration the fluorophore and
quencher are apart, leading to a less efficient quenching, and a
high fluorescence signal. By the labeling of each of the tweezers
with a specific fluorophore [ROXðF1Þ, Cy5.5ðF2Þ, Cy5ðF3Þ], the
configuration of the respective tweezers (open or closed) is opti-
cally read out by the respective fluorescence labels. The domains
Ia and IIb in the tweezers constructs are instructed to switch
between the closed and open configurations by the respective
inputs. The switching of tweezers α is exemplified in Fig. 2A. In
their closed configuration the tweezers include the arms Ia and IIb
bridged to the linker unit by Hg2þ ions through T-Hg2þ-T bonds

Fig. 1. (A) General scheme for the application of three-tweezers structures
and a set of counteracting inputs (I1 and I2) to yield eight different config-
urations (outputs) in a finite-state automaton. (B) General scheme for the
construction of the tweezers structure and its reversible opening/closure
by the counter inputs I1 and I2, respectively.

Author contributions: Z.-G.W., J.E., and I.W. designed research; Z.-G.W., J.E., F.R., R.D.L.,
and I.W. performed research; and Z.-G.W., J.E., F.R., R.D.L., and I.W. wrote the paper.

The authors declare no conflict of interest.
1Z.-G.W. and J.E. contributed equally to this work.
2To whom correspondence may be addressed. E-mail: willnea@vms.huji.ac.il or rafi@
fh.huji.ac.il.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1015858107/-/DCSupplemental.

21996–22001 ∣ PNAS ∣ December 21, 2010 ∣ vol. 107 ∣ no. 51 www.pnas.org/cgi/doi/10.1073/pnas.1015858107

First assignment

Available online later tonight—watch for Piazza message

Due next Tuesday at 11:59pm
• You can use 1 (of 3) “Euros" to turn in 24 hours later, no need to tell us
• I drop your lowest assignment score

Use JFLAP to make DFAs

Remember: pair-programming, office hours, tutoring hours

Test and turn in online—watch for Piazza message

