

Data≡Programs

Data hierarchy

off-machineoff-chipon-chip

Registers Cache(s) RAM 
random-access

memory

Hard 
drive Network

Cost & Speed

central processing unit (CPU) program + data live here

fast registers &  
arithmetic

slow memory &  
no computation

Our focus: registers and RAM

Registers RAM 
random-access

memory

central processing unit (CPU) program + data live here

regis
ters

are
 

like
varia

bles

0

1

4"Reg3"

strobe

Q out
PC#

Reg3"

1 1 0

1 0 0 1 1 1 0 0

the#same"Reg3"

1 1 1 0

0 1 1 1

old value of Reg3 = 7

new value of Reg3 = 11

clock#

0 0 0 0

read enable

RAM#

8 bit instruction

8 address bits

strobe for all
IR bits

D in

decode instruction

strobe to finish
instruction

Ripple3
Adder#

7+4

4 output bits

flip-flops
(1)#What#are#A's#three#inputs,#
and#how#is#A's#output#used?#

(2)#What#is#the#output#of#R#+#
what#2#things#is#it#used#for?#

(3)#Why#are#there#50#and#not#
50#million#on3chip#registers?#

(4)#What#wire(s)#ensure#that#
the#value#4#gets#added?#

(5)#In#the#next#clock#tick,#line#3#
goes#low#(0)#and#line#4#goes#
high#(1).#What#wires#ensure#
that#the#output#of#the#addition#
is#placed#back%into#register#3?#

(6)#Bug!#How#do#we#Oix#it!?!#

1#2#
3#
4#
5#

IR#

Instruction#

10#means#"add"#

Argument#1# Argument#2#
the#register# a#constant#

0 0 1 1 1 0 0

add#4#to#reg3!

IR#

strobe for next instruction Quiz!&

R"
A"

Don't#hand#this#in#

This is just for your enjoyment!  
For CS 42, you don’t need to be able to  
understand or recreate this design.

What kinds of problems
can computers solve?

Decision problems on  
finite, bitstring inputs.

What counts as a problem?

What counts as a computer?

Can sequential logic solve  
all the problems that a DFA  
can? How about a Turing Machine?

Harvey Mudd Miniature Machine (HMMM)

Registers RAM 
random-access

memory

central processing unit (CPU) program + data live here

regis
ters

are
 

like
varia

bles

16 registers  256 memory 
locations

For now, think of this as:  
We can have programs with no  
more than 256 lines of code.

HMMM operations: reading and writing

read r1 r1 = user input

write r1 print r1’s value to screen

HMMM programs
Must have line numbers and must end with a halt instruction

00 read r1

01 write r1

02 halt

http://shickey.github.io/HMMM.js/#/

Firstname Lastname

HMMM operations: arithmetic

T. 9 / 25

(Your response)

Translate these Hmmm operations into a language you understand.

setn r1 42
addn r1 42
copy r2 r1

add r3 r2 r1
sub r3 r2 r1
neg r3 r2
mul r3 r2 r1

Bonus questions (if you have time):

Use addn to infer the range of numbers that can be added to a register.

What happens if you forget halt?

Why do you think there is an addn and and add instruction?

tinyurl.com/hmc-hmmm

http://tinyurl.com/hmc-hmmm

Data operations are like assignments
Read from left to right

setn r1 42 r1 = 42
addn r1 42 r1 = r1 + 42
copy r1 r2 r1 = r2
add r3 r1 r2 r3 = r1 + r2
sub r3 r1 r2 r3 = r1 - r2
neg r3 r1 r3 = -r1
mul r3 r1 r2 r3 = r1 * r2
div r3 r1 r2 r3 = r1 / r2
mod r3 r1 r2 r3 = r1 % r2

numbers in range  
-128 to 127

Jumps control the program’s behavior
Goto a particular line (possibly after comparing a register value to 0)

jumpn 42 goto line 42
jeqzn r1 42 if r1 == 0, goto line 42
jnezn r1 42 if r1 != 0, goto line 42
jgtzn r1 42 if r1 > 0, goto line 42
jltzn r1 42 if r1 < 0, goto line 42

Longer Hmmm programs
What common function does
this program compute?

tinyurl.com/hmc-hmmm

00 read r1

01 read r2

02 sub r3 r1 r2

03 nop # “do nothing”

04 jgtzn r3 7

05 write r1

06 jumpn 8

07 write r2

08 halt

Write a Hmmm program that reads
a positive integer value, then
writes the factorial of that value.

Use only arithmetic, assignments,  
and jumps.

Why is there a nop instruction?

Can you come up with some good
strategies for writing Hmmm
programs?

http://tinyurl.com/hmc-hmmm

Factorial (iterative version)
get the input (r1) from the user
0 read r1

The program works by multiplying r1 * (r1 - 1) * (r1 - 2) * ... * 1,
storing the result in r2, then printing r2
(We'll assume, rather than check, that r1 is non-negative.)

initialize answer (r2) to be 1
1 setn r2 1

while r1 > 0:
multiply the result (r2) by the current value of the counter (r1)
decrement r1
2 jeqzn r1 6 # loop condition: enter loop if r1 != 0
3 mul r2 r2 r1
4 addn r1 -1
5 jumpn 2 # go back to the top of the loop

write the result
6 write r2
7 halt

