lucid, systematic,
and penetrating
treatmient of basic
and dynamic data
structures, sorting,
recursive algorithms,
language structures,
and compiling

PRENTICE-HALL
SERIES IN
AUTOMATIC
COMPUTATION

NIKLAUS WIRTH

s
S el

i"""

o i

Data,

Programs

Data hierarchy

fast registers &

slow memory &

arithmetic no computation
~ : D : D R
on-chip off-chip off-machine
. RAM Hara
F{eg |Ste I'S CaCh e(S) random-access . N etWO rk
memory drive
. central processing unit (CPU)) [program + data live here)L y

Our focus: registers and RAM

of®
S | RAM
e’ \,0‘;\30\ - P{eg Isters random-access
ke memory

central processing unit (CPU) program + data live here

(1) What are A's three inputs,

and how is A's output used?

(2) What is the output of R +
what 2 things is it used for?

(3) Why are there 50 and not

50 million on-chip registers?

(4) What wire(s) ensure that

the value 4 gets added?

(5) In the next clock tick, line 3

goes low (0) and line 4 goes
high (1). What wires ensure

that the output of the addition
is placed back into register 37

strobe for next instruction

_nwis s 'us)’ Por your enJoSmenH

Tor C 42

SOM clonq’ neecl)’O)38 0\)9\2 ;’0

umclers)’omcl or r‘ecr‘eo}e H\is clesiﬁn.

PC

O|J]O0|JO0O]J1]O}|1

read enable

8 address bits

strobe for all
IR bits

1

2
clock i

&

W

decode instruction

add 4 to reg3

11010111 11110]0
S Y 7 Y - Y =
Instruction Argument 1 Argument 2
' a constant
10 means "add" the register
Reg3 4

IR

RAM

O|l1|]1]1]0]O0]IR
l ‘ 8 bit instruction
_R _/
old value of Reg3 =7
O]l]1 1] 1 |[Reg3

YY Y

7Y

Ripple-

7+4

Adder

\'J\'\O}' coum)’s Qs O)OY‘O)D\GTT)?

Decision)oro)o\ems on
-Pmi)’e,)Di)’s)’rin\cj in)ou;’s.

What kinds of problems
can computers solve?

Can sequen)'io\\ \o Te so\ve

all he problems Mhok o DFR
co\n? Hooo o‘)oou)' o) -Turing Mo\c\\ine?

\'J\'\OA' coum)‘s QS O com)ou)‘er?

Harvey Mudd Miniature Machine (HMMM)

of®
XeZ N, . RAM
e’ \‘0(-\30\ - P{eg Isters random-access
e memory
central processing unit (CPU) program + data live here

16 registers 256 memory

locations

Tor Nnow, H’\in\? OF H\is as:

He can ‘have)oro roms ooiH'\ no

more thon 256 lines of) code.

HMMM operations: reading and writing

read ril rl = user input

write rl print r1's value to screen

HMMM programs

Must have line numbers and must end with a ha Lt instruction

0@ read rl HMMM Editor
. a5 B Load File® Save FileM | Docs i Assemble! =
01 write rl S —_—

02 halt

http://shickey.github.io/HMMM.js/#/

HMMM operations: arithmetic

Translate these Hmmm operations into a language you understand.

setn rl 42 add r3 r2 ril

addn rl1 42 sub r3 r2 ril

copy r2 ril neg r3 r2
mul r3 r2 rl

Bonus questions (if you have time):

Use addn to infer the range of numbers that can be added to a register.

What happens if you forget halt?

Why do you think there is an addn and and add instruction?

Firstname Lastname 1.9/72%

(Your response)

http://tinyurl.com/hmc-hmmm

Data operations are like assignments
Read from left to right

(‘* num)oers N range
' 128 to 127

setn rl1 4 rl = 42
addn rl1 42 rl = rl + 42
copy rl1 r2 rl = r2
add r3 rl1 r2 r3 =rl1 + r2
sub r3 rl r2 r3 =rl1 - r2
hegq r3 ril r3 = -rl
mul r3 rl r2 r3 =rl x r2
div r3 rl r2 r3=rl/ r2
mod r3 rl r2 r3 =rl1 % r2

Jumps control the program’s behavior

Goto a particular line (possibly after comparing a register value to 0)

jumpn 42 goto line 42

jeqzn rl 42 if rl == 0, goto line 42
jnezn rl 42 if rl !'= 0, goto line 42
jgtzn rl1 42 if r1 > 0, goto line 42
jltzn rl1 42 if rl < 0, goto line 42

Longer Hmmm programs

00
01
02
03
04
05
06
07
08

What common function does
this program compute?

read rl

read r2

sub r3 rl r2
nop

jgtzn r3 7
write rl
jumpn 8
write r2

halt

Write a Hmmm program that reads
a positive integer value, then
writes the factorial of that value.

Use only arithmetic, assighments,
and jumps.

Why is there a nOp instruction?

Can you come up with some good
strategies for writing Hmmm
programs?

http://tinyurl.com/hmc-hmmm

Factorial (iterative version)

#
0

H H R

U B W N H H = +

o H

get the input (rl) from the user
read rl

The program works by multiplying rl1 x (rl1 — 1) % (rl — 2) % ... % 1,
storing the result in r2, then printing r2
(We'll assume, rather than check, that rl 1s non-negative.)

initialize answer (r2) to be 1
seth r2 1

while rl > 0:
multiply the result (r2) by the current value of the counter (rl)
decrement rl

jeqzn rl 6 # loop condition: enter loop if rl1 != 0

mul r2 r2 ril

addn r1 -1

jumpn 2 # go back to the top of the loop

write the result
write r2
halt

