
Interface for a course

• Each courses has:
• a number (e.g., 42)
• a name (e.g., Principles and Practices of Computer Science)

• We can:
• create a course (initializing it with its number and name)
• access / change a course’s number
• access / change a course’s name
• determine if a course is intro-level  

true if the course’s number is ≤ 100
• print a course

cs42 = Course(42, 'Principles and Practices of Computer Science')

print(cs42.number)

print(cs42.isIntro())

cs42.number = 1000

print(cs42)

create an instance by “calling” the class (calls __init__)

Creating, accessing, and modifying a course

calls __str__

data attribute modification

method call

data attribute access

class Course:
 '''Represents a course at Ivy Tech State (go Platypuses!)'''

 HIGHEST_INTRO_LEVEL = 100

 def __init__(self, number, name):
 self.number = number
 self.name = name

 def isIntro(self):
 '''Returns True if this is an introductory-level course'''
 return self.number <= Course.HIGHEST_INTRO_LEVEL

 def __str__(self):
 return '{}: {}'.format(self.number, self.name)

class attribute

Python code for a course

If there are no restrictions  
on the data attributes,
they can be public;  
we don’t need  
“getters” and “setters”,

Interface for a student

• Each student has:
• a name (e.g., Zhi)
• an ID number (e.g., 101010101)
• a collection of courses that the student has registered for

• We can:
• create / initialize a student instance
• access / change a student’s name
• access / change a student’s ID number
• access a list of a student’s courses
• register the student for a course  

only if the student is registered for < 5 courses
• drop a student from a course

Name Th. 11/15

Interface for a student

• Each student has:
• a name (e.g., Zhi)
• an ID number (e.g., 101010101)
• a collection of courses that the student has registered for

• We can:
• create / initialize a student instance
• access / change a student’s name
• access / change a student’s ID number
• access a list of a student’s courses
• register the student for a course  

only if the student is registered for < 5 courses
• drop a student from a course

string

int or string

list of courses or dictionary of number → course

constructor

N/A?

N/A?

courses()

register(course)

drop(course)

class Student:
 '''...'''

 def __init__(self, number, name):
 self.number = number
 self.name = name
 self._courses = {}

 def courses(self):
 '''...'''
 return self._courses.values()

 def add(self, course):
 '''...'''
 if (len(self.courses()) < 5):
 self._courses[course.number] = course
 else:
 raise ValueError("can't add more than four courses")

 def drop(self, course):
 '''...'''
 return self._courses.pop(course.number, None)

Python code for a student

“raising an exception”

objects interacting with each other

Object-oriented programming

from course import Course
from student import Student

create a course
cs42 = Course(42, 'Principles and Practices of CS')

create a student
ben = Student(101010, ‘Ben')

register student for class
ben.add(cs42)

a common feature in languages

Aside: exception handling

from course import Course
from student import Student

create a course
cs42 = Course(42, 'Principles and Practices of CS')

create a student
ben = Student(101010, ‘Ben')

(try to) register student for class
try:
 ben.add(cs42)
except ValueError as error:
 print(error)

Interface for a course

• Each courses has:
• a number (e.g., 42)
• a name (e.g., Principles and Practices of Computer Science)

•a campus

• We can:
• create a course (initializing it with its number and name)
• access / change a course’s number
• access / change a course’s name
• determine if a course is intro-level  

true if the course’s number is ≤ 100
• print a course

How can we extend the interface, ideally without modifying the existing one or knowing its implementation?

interface 
what a piece of code can do

implementation 
how a piece of code works

type  
describe a set of supported operations

class  
implement a type’s operations

subtype  
add more operations to an existing type

subclass  
re-use/modify an existing implementation

inheritance  
usually extends interface and implementation

Inheritance in Python

import course

class CampusCourse(course.Course):
 '''...'''

 def __init__(self, number, name, campus):
 self.campus = campus

 def __str__(self):
 return self.campus + ' ' + super().__str__()

subclass
superclass

CampusCourse inherits from Course

extend the interface
reuse existing code super().__init__(number, name)

https://www.mysoti.com/img/user/tsswitch/product/web/1161649/1161649_show_default.png

https://www.mysoti.com/img/user/tsswitch/product/web/1161649/1161649_show_default.png

python

file / module / session
from course import Course
from student import Student

create a course
cs42 = Course(42, '…')

create a student
ben = Student(101010, 'Ben')

register student for class
ben.add(cs42)

scopes namespaces

built-in

global

print (and others)

1

2

Course

Reusable components: modules

Student

python

file / module / session
from course import Course
from student import Student

create a course
cs42 = Course(42, '…')

create a student
ben = Student(101010, 'Ben')

register student for class
ben.add(cs42)

scopes namespaces

built-in

global

print (and others)

1

2

Course

Reusable components: objects

Student

instance of

cs42 …

instance of

a

b

python

file / module / session
from course import Course
from student import Student

create a course
cs42 = Course(42, '…')

create a student
ben = Student(101010, 'Ben')

register student for class
ben.add(cs42)

scopes namespaces

built-in

global

print (and others)

1

2

Course

Reusable components: composition

Student

instance of

cs42 …

instance of

ben
…

courses {}

Student “has” Courses

a

b

a

b

python

file / module / session
from course import CampusCourse
from student import Student

create a course
cs42 = CampusCourse(42, '…', 'HMC')

create a student
ben = Student(101010, 'Ben')

register student for class
ben.add(cs42)

scopes

Extensible components: inheritance

namespaces

built-in

global

print (and others)

1

2

CampusCourse

instance of

cs42 …

extends

a

b

c
Course

Let’s practice design
Implement a new data structure: a “queue”

• stores a sequence of values
• create an empty queue
• get the size of a queue
• enqueue: add an element to the back of the queue
• dequeue: remove an element from the front of a queue
• print a queue

composition, inheritance, other, or “I don’t know”

slido.com
#B425

http://slido.com

Composition in Python

class Queue:
 '''A FIFO data structure'''

 def __init__(self):
 '''Creates a new Queue'''
 self._values = []

 def enqueue(self, item):
 '''Add an item to the end of the Queue'''
 self._values.append(item)

 def dequeue(self):
 '''Removes and returns the item from the front of the Queue'''
 return self._values.pop(0)

 def __len__(self):
 return len(self._values)

 def __str__(self):
 return ', '.join(map(str, self._values))

composition: a Queue has a list

we’ve seen this before, with the Stack class

Queue list

Let’s practice design
Implement some classes for a drawing program

• All shapes
• have a color
• have a width

• Some shapes are rectangles. All rectangles
• have a height

• Some shapes are circles. All circles
• have a radius

composition, inheritance, other, or “I don’t know”

slido.com
#B425

http://slido.com

Composition in Python

class Shape:
 def __init__(self, color, width):
 self.color = color
 self.width = width

class Rectangle(Shape):
 def __init__(self, color, width, height):
 super().__init__(color, width)
 self.height = height

class Circle(Shape):
 def __init__(self, color, radius):
 super().__init__(color, radius * 2)
 self.radius = radius

we’ve seen this before, with the Stack class

In [22]: import shape

In [23]: c = shape.Circle('red', 3)

In [24]: c.color
Out[24]: 'red'

In [25]: c.radius
Out[25]: 3

In [26]: c.width
Out[26]: 6

In [27]: isinstance(c, shape.Circle)
Out[27]: True

In [28]: isinstance(c, shape.Shape)
Out[28]: True

In [29]: isinstance(c, shape.Rectangle)
Out[29]: FalseShape

Rectangle Circle

Let’s practice design
Implement a bunch of classes for a game about a pet shelter

• All pets
• have a name
• have an age
• have a kind (e.g., dog, cat, etc.)
• can speak

• Some pets are cats
• When cats speak, they meow

• Some pets are dogs
• When dogs speak, they woof

• Some dogs are Dalmatians
• Dalmatians have spots

• Some dogs are guard dogs
• When dogs speak, they growl

composition, inheritance, other, or “I don’t know”

slido.com
#B425

Pet

Cat Dog

Dalmation GuardDog

http://slido.com

class Pet:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def speak(self):
 raise NotImplementedError

class Cat(Pet):
 def speak(self):
 print('Meow!')

class Dog(Pet):
 def speak(self):
 print('Woof!')

class GuardDog(Dog):
 def speak(self):
 print('Grrr!')

class Dalmation(Dog):
 def __init__(self, name, age, spots):
 super().__init__(name, age)
 self.spots = spots

subclasses should  
implement this method

no need to override  
the constructor;

we’re not changing it

Let’s practice design
Implement a bunch of classes for a game about a pet shelter

• All pets
• have a name
• have an age
• have a kind (e.g., dog, cat, etc.)
• can speak

• Some pets are cats
• When cats speak, they meow

• Some pets are dogs
• When dogs speak, they woof

• Some dogs are Dalmatians
• Dalmatians have spots

• Some dogs are guard dogs
• When dogs speak, they growl

composition, inheritance, other, or “I don’t know”

slido.com
#B425

http://slido.com

Let’s practice design
Implement some classes for a drawing program

• All shapes
• have a color
• have a width

• Some shapes are rectangles. All rectangles
• have a height

• Some rectangles are squares. All squares
• have a size (the length of a side)

• Some shapes are circles. All circles
• have a radius

composition, inheritance, other, or “I don’t know”

slido.com
#B425

http://slido.com

Let’s practice design
Implement some classes for a drawing program

• All shapes
• have a color
• have a width
• can have their width stretched

• Some shapes are rectangles. All rectangles
• have a height
• can have their width stretched without modifying their height

• Some rectangles are squares. All squares
• have a size (the length of a side)

• Some shapes are circles. All circles
• have a radius

composition, inheritance, other, or “I don’t know”

slido.com
#B425

http://slido.com

