
OOP in Java

Prior experience: programming languages

none lots
soon

later

Assembly

Racket

Python

Java

Java is a  
byte-compiled language.

Java has  
static types.

Memory model

primitive values vs objects

Primitive values
int • double • boolean 
other built-in types …

int x = 3;
int y = x;
int z = 3;

x
3

y
3

z
3

Objects
String • LinkedList 
other library & user-defined types …

String s1 = "yes";
String s2 = s1;
String s3 = "yes";

yes
3

s1 s3s2

yes
3

Java stores references  
to objects.

Java directly stores 
primitive values.

== vs .equals

int x = 3;
int y = x;
int z = 3;

x
3

y
3

z
3

String s1 = "yes";
String s2 = s1;
String s3 = "yes";

ye
s

s1 s3s2

ye
s

==
compares what’s in the box

.equals
calls a method (usually checks for equal values)

x == y; // true
y == z; // true
s1 == s2; // true
s2 == s3; // false

s1.equals(s2); // true
s2.equals(s3); // true

primitives objects

variable stores the value ✔

variable stores a reference ✔

supports == ✔ ✔  
but it ’s probably not what you want

supports .equals ✔

we can define new kinds ✔

type name starts with lower-case letter ✔  

int value //
primitive

type name starts with upper-case letter ✔  

Dog lucky // object

Object-oriented
Programming

(again ☺)

What is object-oriented programming good for?

Object-oriented programming helps us manage the
complexity of programs by:

1. combining data with the behavior that operates over it

2. breaking large programs into smaller, self-contained pieces

3. separating interface (what a piece of code can do) from
implementation (how that piece of code works)

Note: there’s an underlying assumption that your program is complex enough to need OOP.

programs
=

data + behavior

encapsulation  
(separate interface
from implementation)

object
• combines data & behavior

• access only through interface

• knows about itself 
(can access its own data and behavior)

an object is sort-of  
like a little state machine!

Object-oriented programming languages differ in:

• how the programmer specifies an object's interface

• how the programmer specifies an object's implementation

• how objects are created, initialized, queried, and updated

• encapsulation mechanism  
how strictly the language enforces the separation between interface & implementation

Object-oriented
Programming

in Java

A class is like…

Objects are like…

a cookie cutter

cookies

ecx.images-amazon.com/images/I/21owTyO6HaL.jpg

eclecticrecipes.com/wp-content/uploads/2013/02/heart-6.jpg

images.edge-generalmills.com/9b6a8635-686e-4b7d-863b-7dd3d8d25a04.jpg

http://ecx.images-amazon.com/images/I/21owTyO6HaL.jpg
http://eclecticrecipes.com/wp-content/uploads/2013/02/heart-6.jpg
http://images.edge-generalmills.com/9b6a8635-686e-4b7d-863b-7dd3d8d25a04.jpg

A class is like…

Objects are like…

factory

cars
si.wsj.net/public/resources/images/P1-AO506_TURNPI_G_20090129173936.jpg

http://si.wsj.net/public/resources/images/P1-AO506_TURNPI_G_20090129173936.jpg

A class is like…

Objects are like…

factory

delicious, 
totally edible
playdough

www.tipsquirrel.com/wp-content/uploads/2010/09/Extrude1.jpg

http://www.tipsquirrel.com/wp-content/uploads/2010/09/Extrude1.jpg

a blueprint for an object; contains implementationclass:
object: a self-contained instance of a class

constructor: initializes an object’s fields

field: stores data

method: defines a behavior

getter: a method that lets us read an object’s data

setter: a method that lets us change an object’s data

interface: what an object can do

implementation: how an object does its thing

public:

private:

indicates a piece of the interface

indicates a piece of the implementation

this: how an object knows about itself

class Point {
 /** the x (horizontal) coordinate */
 private double x;

 /** the y (vertical) coordinate */
 private double y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX() {
 return this.x;
 }

 public void setX(double x) {
 this.x = x;
 }

 public double getY() {
 return this.y;
 }

 public void setY(double y) {
 this.y = y;
 }

 /**
 * returns the sum of this point and another
 *
 * @param other another Point object
 * @return a new Point, the sum of this and other
 */
 public Point add(Point other) {
 return new Point(this.getX() + other.getX(),
 this.getY() + other.getY());
 }
}

class

constructor call

lots of (getter) method calls!

field  
access

field  
definition

Javadoc comment

getter

getter

setter

setter

method definition

Javadoc comment

object!

constructor definition

(this is an object)

Be on the lookout for
• Where’s the interface? Where’s the implementation?

• How to create, initialize, query, and update an object

• How does Java enforce separation of interface & implementation?

• object-oriented vocabulary

• good programming practices

• good programming style

• when (not) to use a particular object-oriented feature

• how to do things in Java

• how to do things in Eclipse

• questions / confusions / pondering

Fields are like a spreadsheet

An Excel-ent analogy

color capacity fullness

Colleen’s mug blue 100 100

Ben’s jug puce 1000 500

Zach’s coffee cup
white  

& green 100000 0

Class definition ≈ columns
a class defines the names and types  

(but not the values) of fields

Objects ≈ rows
each object has  
specific values  

for its field

How to create an Eclipse Project

File → New Java Project

How to create a new Java class
Right-click the src folder Give the class a good name

Style guide:  
use UpperCamelCase  
for class names

class name and filename must match

Field definitions go at top of class

Style guide:  
use lowerCamelCase  
for field names

Good programming practice

Document your fields
(using Javadoc).

A constructor initializes an object

Constructors look like methods.
A constructor has the same name  
as the class.

Good programming practice

Always use this.
It’s not a universally agreed-upon practice, but we’re going to follow it.

Calls the constructor
Use new to instantiate a Java object

Good programming practice

Keep your main program separate  
from your class definitions.

Fields are usually part of the implementation and should be hidden to the user.

Fields are usually private

Constructors are usually public.

We call these accessor methods (or getters & setters).

Fields are accessed via public methods

Style guide:  
use lowerCamelCase  
for method names

Good programming practice

Not every field needs accessors.

Good programming practice

Document your methods
(using Javadoc).

Good programming practice

Write tests first.

Good programming practice

Minimize the number of  
methods that access fields.

Instead, use existing methods  
(e.g., getters & setters).

It’s not a universally agreed-upon practice, but we’re going to follow it.

Implement the fill method

The fill method should fill the container to capacity.

Write code for the entire method,
using all the good programming practices we’ve discussed.

Good programming practice

Write a toString method
The method takes no arguments and returns a String.

public String toString() {
 return "(" + this.getX() + ", " + this.getY() + ")";
}

without toString with toString

Which of the following is true, and why?

Objects and equality

point1 == point2

point1 == point3

point2 == point3

Point point1 = new Point(3, 3);

Point point2 = point1;

Point point3 = new Point(3,3);

✔

point1 x
y

x
y

3
3

3
3

point2

point3

Watch out!

The implementer must provide equals
Otherwise, it may default to reference equality (which is probably not what we want).

Good programming practice

Auto-generate equals (and hashcode)
We normally like to write as much code ourselves as possible. But these methods are … special.

A class’s static field values are the
same for all instances of the class.

Point.ORIGIN point1 point2

x 3
y 3

Point point1 = Point.ORIGIN;
Point point2 = Point.ORIGIN;

Style guide:  
use ALL_UPPER_CASE  
for static field names

Good programming practice

Always refer to a static method via the class.  
Never refer to a static method via an object.

A class’s static methods don’t need an
instance (and they can’t use this).

Watch out!

Java initializes fields with a default value.
The default value of non-primitive fields is null.

The default value of a primitive field depends on its type.

Good programming practice

Provide good constructors.

how to call the  
two-argument constructor

Object-oriented programming languages differ in:

• how the programmer specifies an object's interface

• how the programmer specifies an object's implementation

• how objects are created, initialized, queried, and updated

• encapsulation mechanism  
how strictly the language enforces the separation between interface & implementation

Encapsulation is a social construct
There is no public, protected, private in Python

If a field or method of a class is not part of the interface,
prepend the name of that field / method with an underscore.

class Person:
 def __init__(self, name, age):
 self.name = name
 self._age = age

 def setAge(self, newAge):
 if newAge < self._age:
 raise ValueError, "You can't get younger! (sorry)"

 self._age = newAge

 def getAge(self):
 return self._age

Don’t touch  
NOT part of the interface!
(Python does not try to enforce)

Encapsulation is a social construct
Java has some language features that can help

If a field or method of a class is not part of the interface,
use private.

public class Person {
 private String name;
 private int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 ...

Don’t touch  
NOT part of the interface!
(Java enforces at compile time)

