DFAs are useful-they're everywhere!

Ell FSM
Nathan Milie:
votiou Y.sweratran

All-DNA finite-state automata with finite memory

${ }^{a}$ Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel; ${ }^{\text {b }}$ Chemistry Department, B6c, University of Liège, 4000 Liège, Belgium; and 'Department of Chemistry and Biochemistry, Crump Institute for Molecular Imaging, and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095

Contributed by Raphael D. Levine, October 25, 2010 (sent for review August 6, 2010)
Biomolecular logic devices can be applied for sensing and nanomedicine. We built three DNA tweezers that are activated by the inputs $\mathrm{H}^{+} / \mathrm{OH}^{-} ; \mathrm{Hg}^{2+}$ /cysteine; nucleic acid linker/complementary antilinker to yield a 16 -states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence

Draw the DFA for $L=\{01\}$

Full name
T. 9/11

Deterministic Finite Automaton (DFA)

Has a finite alphabet ($\boldsymbol{\Sigma}$) of valid symbols.
Has a finite set of states-one initial state and some accepting states.
Has a transition function.
Each configuration has exactly one transition. $\leftarrow A D F A ' s$ "configuration"
Each transition consumes one input symbol. is its current state and current input symbol.
The machine can be in exactly one state at a time.
Given an input string, a DFA operates as follows:
The machine starts in the initial state.
The machine takes the only applicable transition (consuming an input symbol) until it has read and responded to the entire input string. When all the input is consumed, the machine halts.
The machine accepts only if it is in an accepting state.

What makes for a "good" DFA?

\qquad Seth Borenstein, Associated Press
© Oct. 5, 2015, 5:46 AM A $2,517 \quad \bigcirc 7$

WASHINGTON
L°
Volkswagen's poll chicanery has not victimless tinkerin between five and 2 United States ann years, according t

Volkswagen HQ raided by German police

Given a language L, can we prove that a DFA for L requires at least n states, for some n ?

Let's practice!

Show that the DFA for the following language requires at least 3 states:

$$
\mathrm{L}=\{w \mid \text { the length of } w \text { is divisible by } 3\}
$$

Distinguishability

of two strings

Two strings w_{1}, w_{2} are distinguishable if there is some other string z such that $w_{1} z \in \mathrm{~L}$ and $w_{2} z \notin L$.

λ and 1 are distinguishable.

Pair-wise distinguishability

of a set of strings

A set of strings $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is
pairwise distinguishable for a language L if every pair of strings $w_{i} \neq w_{j}$ is distinguishable.

		w_{1}	w_{2}	w_{3}
		$\boldsymbol{\lambda}$	$\mathbf{1}$	$\mathbf{1 1}$
	w_{1}	$\boldsymbol{\lambda}$	-	11
w_{2}	$\mathbf{1}$	-	$\mathbf{1}$	
	w_{3}	$\mathbf{1 1}$	-	-

The set $\{\lambda, 1,11\}$ is pairwise distinguishable.

Distinguishability theorem

If a set of strings $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is pairwise distinguishable for a language L , then any DFA that accepts L must have at least n states.

Co

\square

Two unanswered questions

What is the minimal number of states required for L's DFA?
Given the minimal number of states, how do we construct a correct DFA?

Wouldn't this be great?

$\mathrm{L}=\{w \mid w$ is 01 or the length of w is odd $\}$

or

Wouldn't this be great?

$\mathrm{L}=\{w \mid w$ is 010 or the length of w is even $\}$

$$
\begin{aligned}
& \text { Unspecified configurations } \\
& \text { transition to an implicitly } \\
& \text { defined, rejecting state. }
\end{aligned}
$$

" λ transitions" don't consume input, they just change state. NFAs can be in more than one state at the same time.

Nondeterministic Finite Automaton (NFA)

Has a finite alphabet ($\boldsymbol{\Sigma}$) of valid symbols.
Has a finite set of states-one initial state and some accepting states. Has a transition relation. Each configuration corresponds to zero or more transitions.
λ-transitions change state but do not consume input.
All other transitions consume one input symbol. Unspecified configurations
The machine can be in multiple states at one time.

$$
\begin{aligned}
& \text { transition to an implicitly } \\
& \text { defined, rejecting state. }
\end{aligned}
$$

Given an input string, a DFA operates as follows:
The machine starts in the initial state.
The machine takes all applicable transitions until it has read and responded to the entire input string. When all the input is consumed, the machine halts.

The machine accepts only if it is in at least one accepting state.

Draw these NFAs

(1) $\mathrm{L}=\{w \mid w$ is 101 or w contains an odd number of 1 s$\}$
(2) $\mathrm{L}=\{w \mid w$ starts with 1 and ends with either 00 or 01$\}$

Draw these NFAs

(1) $\mathrm{L}=\{w \mid w$ is 101 or w contains an odd number of 1 s$\}$

Write test cases first!!!!
At least three strings accepted by the NFA. At least three strings rejected by the NFA.

Draw these NFAs

(2) $\mathrm{L}=\{w \mid w$ starts with 1 and ends with either 00 or 01$\}$

Write test cases first!!!!
At least three strings accepted by the NFA. At least three strings rejected by the NFA.

