
CS42_Tabulation

November 7, 2018

1 Tabulation and Dynamic Programming

2 Warm-up: Pythonic make-change

Below is Racket code for make-change. Translate the code to Python.

(define (make-change total coin-list)
(cond

[(= total 0) true]

[(empty? coin-list) false]

[else (let* ([it (first coin-list)]
[lose-it (rest coin-list)]
[lose-it-solution (make-change total lose-it)]
[use-it-solution (and (>= total it)

(make-change (- total it) lose-it))])
(or use-it-solution lose-it-solution))]))

Firstname Lastname

T. 11/6

3 Tabulated Fibonacci

In [8]: def fib(n):
'''
Given a positive integer n, returns the nth fibonacci number, where

fib(1) = fib(2) = 1
fib(n) = fib(n-1) + fib(n-2)

'''

assert n > 0, 'fib requires a positive number'

if (n == 1) or (n == 2):
return 1

return fib(n-1) + fib(n-2)

1

In [16]: def tabulated_fib(n):
'''
Given a positive integer n, returns the nth fibonacci number, where

fib(1) = fib(2) = 1
fib(n) = fib(n-1) + fib(n-2)

This function computes fibonacci using tabulation.
'''

assert n > 0, 'fib requires a positive number'

size = max(n + 1, 3)

table = [0 for i in range(size)]

table[1] = 1
table[2] = 1

for i in range(3, size):
table[i] = table[i - 1] + table[i - 2]

return table[n]

In [18]: import experimental
fibTrials = range(1, 15)
iterations = 1000

In [19]: # take some measurements
recursiveFibResults = experimental.timeTrials(fib, fibTrials, iterations)
tabulatedFibResults = experimental.timeTrials(tabulated_fib, fibTrials, iterations)

In [20]: # plot the results
%matplotlib inline
experimental.plot(fibTrials, [recursiveFibResults, tabulatedFibResults], legend=['recursive', 'tabulated'])

2

3.1 Dynamic programming with tabulation: what we learned

1. We can write the recursive version first, to gain intuition about the dynamic-programming
version.

2. For each recursive call + input, there is a corresponding cell in our dynamic-programming
table.

3. To build the dynamic-programming table, we ask:

• What do the cells mean? (recursion / table connection)
• How many cells are there, for an input of size N?
• Which cell contains the result, i.e., the answer to the full problem of size N?
• What cells are easy to fill in? (base cases)
• What rule fills in a cell? (inspired by the recursive call)
• In what order should we fill the cells?

4 Tabulated factorial

In [25]: def factorial(n):
'''
Given a non-negative integer n, returns n!

The function computes n! recursively
'''

3

assert n >= 0, 'factorial requires a non-negative number'

if n == 0:
return 1

return n * factorial(n-1)

In [22]: def tabulated_factorial(n):
'''
Given a non-negative integer n, returns n!

The function computes n! using tabulation
'''

assert n >= 0, 'factorial requires a non-negative number'

table = [None] * (n + 1) # create the dynamic-programming table

base case
table[0] = 1

fill the table
for i in range(1, n + 1):

table[i] = i * table[i - 1]

return table[n]

In [26]: # take some measurements
factTrials = range(50)
iterations = 500

In [27]: recursiveFactResults = experimental.timeTrials(factorial, factTrials, iterations)

In [28]: tabulatedFactResults = experimental.timeTrials(tabulated_factorial, factTrials, iterations)

In [29]: # plot the results
experimental.plot(factTrials, [recursiveFactResults, tabulatedFactResults], legend=['recursive', 'tabulated'])

4

5

commons.wikimedia.org/wiki/File:Platypus-sketch.jpg

http://commons.wikimedia.org/wiki/File:Platypus-sketch.jpg

How did this happen?!

"Its probably the most eagerly awaited genome since the chimp genome because
platypuses are so weird," said Jenny Graves, one of the paper’s authors, and head of the
Comparative Genomics Group at the Australian National University.

"You see genes that look reptile-like, genes that look bird-like and genes that look
mammal-like. Its a pretty amazing picture," said Rick Wilson, director of the Genome
Center at Washington University in St Louis.

www.sciencebuzz.org/blog/platypus-genome-reveals-natures-frankenstein-creature-one

In the platypus a meiotic chain of ten sex
chromosomes shares genes with the bird Z and
mammal X chromosomes,  
Grützner, et al. Nature 2004.

commons.wikimedia.org/wiki/File:Platypus-sketch.jpg

http://www.sciencebuzz.org/blog/platypus-genome-reveals-natures-frankenstein-creature-one
http://www.nature.com/nature/journal/v432/n7019/full/nature03021.html
http://commons.wikimedia.org/wiki/File:Platypus-sketch.jpg

A string is a list of characters

Strings as inductive data structures

w ∈ Σ
s ∈ String ::= ε
 | w • s

“alphabet”  
(e.g., {A…Z} or {0,1})character

empty string

concatenation

'' # empty
s[0] # (first s)
s[1:] # (rest s)

Python strings Racket lists

The longest-common substring of s1 and s2 is the longest
string that is a non-consecutive substring of both s1 and s2.

longest-common substring (LCS)

lcs('x', 'y') == 0

lcs('x', '') == 0

lcs('', 'x') == 0

lcs('car', 'cat') == 2

lcs('human', 'chimpanzee') == 4

How similar are these strings?

longest-common substring (LCS)

The longest-common substring of s1 and s2 is the longest
string that is a non-consecutive substring of both s1 and s2.

def lcs(s1, s2):
 '''Returns the longest-common substring of s1 and s1’''

 if not s1 or not s2:
 return 0

 elif s1[0] == s2[0]:
 return 1 + lcs(s1[1:], s2[1:])

 else:
 return max(lcs(s1, s2[1:]), lcs(s1[1:], s2))

How similar are these strings?

Python idiom  
for empty sequence

lcs ⇒ DNA sequence alignment!
Nature 2004

http://en.wikipedia.org/wiki/Sequence_alignment
http://www.nature.com/nature/journal/v432/n7019/full/nature03021.html

How different are these strings?

Edit distance

What’s the minimum number of modifications it takes to turn s1 into s2?

A “modification” can be:
• substitute one letter for another in one of the strings
• delete a letter from one of the strings
• insert a letter into one of the strings

cat vs ε

cat vs hat

cat vs at

spam vs scramble

hello vs below

3
1
1

3
5

A recursive implementation

Edit distance

def editDistance(first, second):
 '''
 Returns the edit distance between  
 the strings first and second.
 '''

A recursive implementation

Edit distance

def editDistance(first, second):
 '''
 Returns the edit distance between  
 the strings first and second.
 '''
 if not first:
 return len(second)

 elif not second:
 return len(first)

Python idiom  
for empty sequence

A recursive implementation

Edit distance

def editDistance(first, second):
 '''
 Returns the edit distance between  
 the strings first and second.
 '''
 if not first:
 return len(second)

 elif not second:
 return len(first)

 elif first[0] == second[0]:
 return editDistance(first[1:], second[1:])

 else:
 substitution = 1 + editDistance(first[1:], second[1:])
 deletion = 1 + editDistance(first[1:], second)
 insertion = 1 + editDistance(first, second[1:])
 return min(substitution, deletion, insertion)

Python idiom  
for empty sequence

Edit distance ⇒ spell-checker!

http://en.wikipedia.org/wiki/Ispell

