
xkcd.com/353

()

Python 3

http://xkcd.com/353/

Take-home midterm #2

Available: this Sunday night (10/28)

Must return by: the following Sunday (11/4) at 5pm

Time-limit: one sitting (with small breaks)

Covers: from the end of Hmmm to before break
functional programming, higher-order functions, recursion,
analysis (recurrence and Big O), use-it-or-lose-it, trees

Resources: one, 8½ x 11 sheet of notes (double-sided)

Honor code: don’t discuss exam questions

Firstname Lastname

What’s still unclear about FP?

In the larger space, write down any lingering questions you
have about functional programming, recursion, “use it or
lose it”, analysis (e.g., recurrence relations), Racket, etc.
Use the “lingering questions” portion for questions about
today’s material.

Th. 10 / 25

(Your response)

There’s so much more to Racket

clojure.orgracket-lang.org

http://clojure.org

Racket is 
syntactic sugar 

for the λ-calculus.

x ∈ Identifiers
expr ::= x
 | (lambda (x) expr)
 | (expr expr)

Preface: 
What follows will  

never be on a CS 42
assignment or exam.

(define (NOT x)
 (aif x false true))

(define (AND x y)
 (aif x y false))

(define (OR x y)
 (aif x true y))

(define (NOT x)
 (aif x false true))

(define (AND x y)
 (aif x y false))

(define (OR x y)
 (aif x true y))

(define NOT (λ (x)
 (aif x false true)))

(define AND (λ (x y)
 (aif x y false)))

(define OR (λ (x y)
 (aif x true y)))

(define NOT (λ (x)
 (aif x FALSE TRUE)))

(define AND (λ (x y)
 (aif x y FALSE)))

(define OR (λ (x y)
 (aif x TRUE y)))

(define TRUE (λ (x y) x))
(define FALSE (λ (x y) y))

(define NOT (λ (x)
 (ax FALSE TRUE)))

(define AND (λ (x y)
 (ax y FALSE)))

(define OR (λ (x y)
 (ax TRUE y)))

(define TRUE (λ (x y) x))
(define FALSE (λ (x y) y))

Python Overview

Prior experience: programming languages

none lots
soon

later

Assembly

Racket

Python

Java

repl.it/languages/python3

slido.com (event code: Z314)

http://www.apple.com
http://slido.com

The essence of Python

Everything is an object.*

Every object has

a value.

a type.

an identity.

a namespace.

*but some objects (e.g., numeric and boolean literals) are “special”.

>>> 1 # value
1
>>> type(1) # type
<type 'int'>
>>> id(1) # identity
140686900921016
>>> dir(1) # namespace
['__abs__', ..., 'real']

