
Mac OS Assembly language
Google Chrome:
(__TEXT,__text) section
0000000100000ef0 pushq $0x0
0000000100000ef2 movq %rsp, %rbp
0000000100000ef5 andq $-0x10, %rsp
0000000100000ef9 movq 0x8(%rbp), %rdi
0000000100000efd leaq 0x10(%rbp), %rsi
0000000100000f01 movl %edi, %edx
0000000100000f03 addl $0x1, %edx
0000000100000f06 shll $0x3, %edx
0000000100000f09 addq %rsi, %rdx
0000000100000f0c movq %rdx, %rcx
0000000100000f0f jmp 0x100000f15
0000000100000f11 addq $0x8, %rcx
0000000100000f15 cmpq $0x0, (%rcx)
0000000100000f19 jne 0x100000f11
0000000100000f1b addq $0x8, %rcx
0000000100000f1f callq _main
0000000100000f24 movl %eax, %edi
0000000100000f26 callq 0x100000f46 ## symbol stub for: _exit
0000000100000f2b hlt
0000000100000f2c nop
0000000100000f2d nop
0000000100000f2e nop
0000000100000f2f nop

registersnumbers

The Principles in CS 42

Theory of computation & Machines (~4 weeks)
What is a computer?

Functional programming (~ 4 weeks)
There is no difference between functions and variables.

Problem-solving techniques (~ 3 weeks)
Algorithms & Data structures
What is Computer Science?

Object-oriented programming (~ 3 weeks)
How do we design a program so that it can grow and change?

no code!

no loops!  
no assignments!

How’s CS 42 going?
(1) The pace of this class is...  

1 = way too slow; 4 = just right; 7 = way too fast

(2) I’m learning a lot in CS 42.  
1 = strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

(3) I find the handouts helpful.  
1 = strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

(4) I can get help / support from (e.g., Ben, grutors, Piazza), if and when I need it. 
1 = strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

(5) When it comes to workload, so far, this is my heaviest course this semester.  
1 = strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

Full name T. 10/2

What does it mean
“to compute”?

An Engineer’s Viewpoint
Computation means modifying the bits in memory & registers,
step-by-step until we’re done.

0 read r1 # read dividend from the user
1 write r1 # echo the input
2 read r2 # read divisor from the user
3 jeqz r2 7 # jump to 7 if trying to divide by 0
4 div r3 r1 r2 # divide user's parameters
5 write r3 # print the result
6 halt
7 setn r3 0 # 0 is the return for division by 0
8 write r3 # print the result
9 halt

Imperative programming
Step-by-step instructions for updating memory (data)

"ENJOJTUSJWJB #JH *EFBT JO $4 &WFSZUIJOH�T +VTU #JUT "CTUSBDUJPO 1BSBEJHNT 3BDLFU

*øûðýìÿôāð 1ýúòýìøøôùò
4UFQ�CZ�TUFQ JOTUSVDUJPOT GPS VQEBUJOH NFNPSZ 	EBUB

4
1f

n

while n > 1:
 f = f*n
 n = n-1

4
1f

n

while n > 1:
 f = f*n
 n = n-1

4
4f

n

while n > 1:
 f = f*n
 n = n-1

3
4f

n

while n > 1:
 f = f*n
 n = n-1

3
4f

n

while n > 1:
 f = f*n
 n = n-1

3
12f

n

while n > 1:
 f = f*n
 n = n-1

2
12f

n

while n > 1:
 f = f*n
 n = n-1

2
12f

n

while n > 1:
 f = f*n
 n = n-1

2
24f

n

while n > 1:
 f = f*n
 n = n-1

1
24f

n

while n > 1:
 f = f*n
 n = n-1

1
24f

n

while n > 1:
 f = f*n
 n = n-1

TIME

TIME

while n > 1:
 f = f*n
 n = n-1

A Mathematician’s viewpoint
Computation means evaluating an expression to get its value.

k Y k

8 sin3 x+ y2

{ x ∈ R | x3 > 5 } ∩ { y ∈ R | y2 < 5}

1√
2π

∫ ∞

−∞
f(t) e−iωt dt

Functional programming
Calculating answers (by repeatedly evaluating sub-calculations)

"ENJOJTUSJWJB #JH *EFBT JO $4 &WFSZUIJOH�T +VTU #JUT "CTUSBDUJPO 1BSBEJHNT 3BDLFU

'Āùîÿôúùì÷ 1ýúòýìøøôùò
$BMDVMBUJOH BOTXFST 	JO UFSNT PG TVC�DBMDVMBUJPOT

GBDU(n) :=

{
1 JGn = 0

n× GBDU(n− 1) PUIFSXJTF

∴ GBDU(4) = 4× GBDU(3)
= 4× (3× GBDU(2))
= 4× (3× (2× GBDU(1))))
= 4× (3× (2× (1× GBDU(0))))
= 4× (3× (2× (1× 1)))
= 4× (3× (2× 1))
= 4× (3× 2)
= 4× 6
= 24

Features of functional programming

A functional program contains no assignment statements.
A variable’s value, once initialized, never changes.

Functional programs use a somewhat limited set of language features.
variables, primitive values, conditionals, function definitions & calls

A function’s only purpose is to compute its result; it has no side effects.

Functional programs have referential transparency.
An expression always evaluates to the same result, given the same input.

Why are we learning functional programming?

It can teach us something about computation.

Most modern language are a hybrid of imperative & functional styles.

It helps us learn how to choose the right tool for the right job.

Prior experience: programming languages

none lots
soon

later

Assembly

Racket

Python

Java

Math notation is not consistent

Racket notation is consistent

(sin x) (+ x y) (sqr x)

(- y)
(abs -3)

(- (+ a b) c)

(sqrt 2)

Racket: operations (s-expressions)

• Rules:
• the operation always comes first
• its arguments (if there are any) follow the operation
• no commas between arguments
• everything goes between parentheses

• Common mistakes:
• forgetting parentheses
• rational vs. integer division (/ vs. quotient)
• equality (= vs. equal?)

(op arg1 arg2 … argn)

https://en.wikipedia.org/wiki/File:Perry_Platypus.png

https://en.wikipedia.org/wiki/File:Perry_Platypus.png
https://en.wikipedia.org/wiki/File:Perry_Platypus.png

Dr. Racket
an Integrated Development Environment (IDE) for Racket

“definitions” (i.e., programs) go here

“interactions” go here

boilerplate: the version of Racket we’re using

Run the program!

Racket: “variables”
They’re called variables, but we won’t vary them (i.e., their values are constant).

(let* ([var1 expr1]
 …
 [varn exprn])
 body)

“scope” of variables

“bind” a value to a variable

