Mac OS Assembly language

Google Chrome:

(TEXT, text)

0000000100000ef0
0000000100000ef?2
0000000100000ef5
0000000100000ef?9
0000000100000efd
0000000100000£01
0000000100000£03
0000000100000£06
0000000100000£09
0000000100000£0c
0000000100000£0£
0000000100000f11
0000000100000£15
0000000100000£19
0000000100000f1b
0000000100000f1 £
0000000100000£24
0000000100000f£26
0000000100000£2b
0000000100000f2c
0000000100000£2d
0000000100000f2e
0000000100000f£2f

section

ﬂLAﬁDkDerES . ¥
r€f5HS ers
pushqg $Ox0kx”fi;::;:xmm
movq Srsp, sSrbp
andq $-0x10, %rsp
movq 0x8 (srbp), %Srdi
leaq 0x10 (%rbp), %rsi
movl Sedi, %edx
addl S0x1, %Sedx
shll S0x3, %edx
addg $rsi, S%Srdx
movqg srdx, %Srcx
Jmp 0x100000£15

addqg $0x8, S%Srcx

cmpg S0x0, (%rcx)

jne 0x100000f11

addqg $0x8, S%Srcx

callqg ~mailn

mov .l seax, %Sedi

callg 0x100000f46 #
hlt

nop

nop

nop

nop

symbol stub for:

_exit

The Principles in CS 42

Functional programming (~ 4 weeks) o \oo)os\

There is no difference between functions and variables. o stisnmen)%!

How’s CS 42 going?
(1) The pace of this class is...

1 =way too slow; 4 = just right; 7 = way too fast

(2) I’'mlearninga lotin CS 42.
1 =strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

(3) Ifind the handouts helpful.

1 =strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

(4) |can gethelp/supportfrom (e.g., Ben, grutors, Piazza), if and when | need it.
1 =strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

(5) When it comes to workload, so far, this is my heaviest course this semester.
1 =strongly disagree; 4 = neither agree nor disagree; 7 = strongly agree

Full name 1.10/2

What does it mean

“to compute’?

An Engineer’s Viewpoint

Computation means modifying the bits in memory & registers,
step-by-step until we’re done.

O read rl # read dividend from the user

1 write rl # echo the input

2 read r2 # read divisor from the user

3 jeqz r2 7 # jump to 7 if trying to divide by 0
4 div r3 rl r2 # divide user's parameters

5 write r3 # print the result

6 halt

/] setn r3 0 # 0 1s the return for division by 0
8 write r3 # print the result

9 halt

Imperative programming

Step-by-step instructions for updating memory (data)

while n > 1:

f = f*n
n =n-1
TIME =
- while n > 1: while n > 1: while n > 1: - while n > 1: while n > 1: while n > 1:
f = f*n —p f = f*n f = f*n f = f*n =P f = f*n f="%n
n =n-1 n =n-1 —gp N = N-1 n =n-1 n =n-1 —gp N = N-1
n 4 n 4 n 4 n 3 n 3 n 3
fl 1 fl 1 fl 4 fl 4 fl 4 fl 12
v TIME >
- while n > 1: while n > 1: while n > 1: - while n > 1: while n > 1:
f = f*n —P f = f*n f = f*n f = f*n f = f*n
n =n-1 n =n-1 P n = n-1 n =n-1 n =n-1
N 2 & nl 2 N1 N1
fl 12 fl1 12 f1 24 fl1 24 f1 24

A Mathematician’s viewpoint

Computation means evaluating an expression to get its value.

2 + 2

8 sin” & + 1°

1 > —iwt
\/%/OO f(t) e dt

fzeR|2°>5)} N {yeR | y* <5}

Functional programming

Calculating answers (by repeatedly evaluating sub-calculations)

fact(n) := {

|

n X fact(n — 1) otherwise

ifn=20

fact(4)

4 x fact(3)

4 x (3 x fact(2))

4 X (2 x fact(1))))

4 X (2 x (T % fact(o))))
(2 x (T x 1)))

(2 % 1))

2)

x (3
x (3
X (3 %
X (3 X
X (3 X
4><6
24

Features of functional programming

A functional program contains no assignment statements.
A variable’s value, once initialized, never changes.

Functional programs use a somewhat limited set of language features.
variables, primitive values, conditionals, function definitions & calls

A function’s only purpose is to compute its result; it has no side effects.

Functional programs have referential transparency.
An expression always evaluates to the same result, given the same input.

Why are we learning functional programming?

It can teach us something about computation.
Most modern language are a hybrid of imperative & functional styles.

It helps us learn how to choose the right tool for the right job.

Prior experience: programming languages

sOoOoNn

none

Math notation is not consistent

SIN X .CIZ‘—|-y

—J —3|

(a+b) — cC

V2

Racket notation /s consistent

SIN I CIZ‘—|-y 5
e) (+ xy) (sqrmx)
Y -3 V2
(= y)
(abs -3) (sqrt 2)
(a4 b) — cC

Racket: operations (s-expressions)

(op argi argz .. argn)

e Rules:
e the operation always comes first

e itsarguments (if there are any) follow the operation
e NO commas between arguments
e everything goes between parentheses

e Common mistakes:
o forgetting parentheses
e rationalvs. integer division (/ vs. quotient)
o equality (=vs.equal?)

https://en.wikipedia.org/wiki/File:Perry_Platypus.png

https://en.wikipedia.org/wiki/File:Perry_Platypus.png
https://en.wikipedia.org/wiki/File:Perry_Platypus.png

Dr. Racket

an Integrated Development Environment (IDE) for Racket

/Rum H\e FY‘OS'gY‘O\m!

o0e® Untitled - DrRacket
Untitledw (define ..) ¥ Debug @] Check Syntax 4 Macro Stepper Pl Run[> Stop [l

1 | #lang racket <«

)Doi\er)o\o\)’e: Hwe version o{)ﬁo\c\?e)’ we re usinf)

”cleﬁni)'ions” (i.e.,)orOSDrams) 9o \were

Welcome to DrRacket, version 6.2.1 [3m].
Language: racket [custom]; memory limit: 128 MB.
>

”in)'ero\c)'ions” 30 \\ere

Determine language from source custom 3:2 155.90 MB [:I @ []

Racket: “variables”

They're called variables, but we won’t vary them (i.e., their values are constant).

(letx ([var: expr:l

[varn, expral)
body)

® O Untitled - DrRacket

Untitled ¥ (define ...)¥ Check Syntax ©4 Debug @l Macro Stepper i’ Wl Run|> Stop

Welcome to DrRacket, version 6.6 [3m]. \
Language: racket, with debugging; memory limit: 128 MB.
> (letx ([x 30]
[y 121)
(+ x y))
42

> X
% 0 X: undefined;

cannot reference an identifier before its definition
> (letx ([x 30]
[z 12])
(+ x y))

% O y: undefined,;

cannot reference an identifier before its definition
> |

Determine language from source¥ 15:2 325.12 MB

