The 2018 Chemistry
Laureates

The Royal Swedish Academy of Sciences has decided to award the
Nobel Prize in Chemistry 2018 with one half to Frances H. Arnold
“for the directed evolution of enzymes” and the other half jointly to
George P. Smith and Sir Gregory P. Winter “for the phage display of
peptides and antibodies”.

Read the press release

[ll. Niklas EImehed. © Nobel Media

Press Release: The
Nobel Prize in Chemistry
2016

5 October 2016

The Royal Swedish Academy of Sciences has decided to award the Nobel
Prize in Chemistry 2016 to

Jean-Pierre Sauvage
University of Strasbourg, France

Sir). Fraser Stoddart
Northwestern University, Evanston, IL, USA

and

Bernard L. Feringa
University of Groningen, the Netherlands

“for the design and synthesis of molecular machines”

They developed the world's smallest
machines

A tiny lift, artificial muscles and miniscule motors. The Nobel Prize in
Chemistry 2016 is awarded to Jean-Pierre Sauvage, Sir). Fraser
Stoddart and Bernard L. Feringa for their design and production of
molecular machines. They have developed molecules with
controllable movements, which can perform a task when energy is
added.

The development of computing demonstrates how the miniaturisation of
technology can lead to a revolution. The 2016 Nobel Laureates in Chemistry
have miniaturised machines and taken chemistry to a new dimension.

The first step towards a molecular machine was taken by Jean-Pierre Sauvage
in 1883, when he succeeded in linking two ring-shaped molecules together to
form a chain, called a catenane. Normally, molecules are joined by strong
covalent bonds in which the atoms share electrons, but in the chain they
were instead linked by a freer mechanical bond. For a machine to be able to
perform a task it must consist of parts that can move relative to each other.
The two interlocked rings fulfilled exactly this requirement.

The second step was taken by Fraser Stoddart in 1991, when he developed a
rotaxane. He threaded a molecular ring onto a thin molecular axle and

T PP e aeseked: A RAlabkeal RiAasdiae A N4 S

The pace of this class is...

24

18

12

way too
slow

just right

way too
fast

I’m learning a lot in CS 42.

24
18
12
6
N
1 2 3 4 5 6 7
strongly neither agree strongly

disagree nor disagree agree

When it comes to workload, so far,
this is my hardest course.

24

18

1 2 3 4 5 6 /

strongly neither agree strongly
disagree nor disagree agree

Three kinds of work

In-class

Why? introduce new skills and concepts, provide context, discuss implications
How? lectures, small-group discussions, exercises

Assignments

Why? practice skills and concepts
How? usually by making things

Exams

Why? build deeper understanding of concepts
How? apply familiar concepts in new contexts

Help outside of class

® ©® [Hmccs42—Fall 2018 x =+

- C @& https://hmc-cs-42-fall2018.github.io X ﬁ

S 42: Principles and Practice of Computer Science

TTh 9:35am—10:50am in SHAN 2460

Piazza - Gradescope - Office / tutoring hours

®O0® [Jcsa X 4
& C' @& https://piazza.com/class/jjvisvnxlandyn?cid=13 % ﬁ :

p|QZZQ Q&A Resources Statistics Manage Class

ﬁhwl hw2 hw3 hw4 exam logistics other hwO submission-system grutors

| 2 |Note History: ————

E note stop following

Office hours and tutoring hours

Office hours with Ben, in Olin B161C
¢ Mondays 3-5pm

Tutoring hours with the grutors in the LAC (Roland Maxine Linde Activities Center):
¢ Generally, there are grutoring hours in the evening Sunday-Wednesday, as well as Friday, Saturday, and Sunday afternoons.

¢ For the most-up-to-date information, browse this Google doc.
If there are a lot more people than grutors, we'll form a queue to make sure every gets a turn.

Racket conditionals

(if conditional-expr (cond [condition: expril

true—expr
false—expr) [condition, exprn]
[else else-expr])

this is the most common form of cond

idiom: if you have more than one condition, use cond

Racket: functions

(define (function-name parameter; . parametern)
body)

Write tests first!

using rackunit

[NON) average.rkt - DrRacket
average.rkt¥ (define ...)¥ Check Syntax [J4 Debug @2l Macro Stepper Wl Run[> Stop [l
1 | #lang racket \\\~
2
3 | (require rackunit) ; this line gives us access to the testing library
4
SN HHHHEH P H
6 | ;; int-average
IR H
8
9| ;; int-average: computes the average of two numbers, using integer division
10 | ;; inputs: x & y, two integers
11 | ;; outputs: the integer average of the two inputs
12 | (define (int-average x y)
13 0)
14
15 | ; tests
16 | (check-equal? (int-average @ 0) 0)
17 | (check-equal? (int-average 0 2) 1)
18 | (check-equal? (int-average 4 6) 5)
19 | (check-equal? (int-average 1 1) 1)
/) |(check-equal? (int-average 1 2) 1)
21
FAILURE
actual: 0
expected: 1
name: check—-equal?
location: (#<path:/Users/ben/Documents/work/teaching/courses/C542/fall 2016/class/05_1 - 2

Racket Intro/code/average.rkt> 19 0 497 34)
expression: (check-equal? (int-average 1 1) 1)

€& Check failure

FAILURE

| v, 11T « Y7]

Write tests first!

using rackunit

[NON average.rkt - DrRacket
average.rkt¥ (define ...)¥ Check Syntax D4 Debug @2l Macro Stepper @I Run > Stop [l

1 | #lang racket \\\~
2

3 | (require rackunit) ; this line gives us access to the testing library

<EAHHHHHHHHHHHEH
6 | ;; int-average

A HH T H HH HHHHHE

9| ;; int-average: computes the average of two numbers, using integer division
10 | ;; inputs: x & y, two integers

11| ;; outputs: the integer average of the two inputs

12 | (define (int-average x y)
(quotient (+ x y) 2))

14
15 | ; tests

16 | (check-equal? (int-average 0 @) 0)
17 | (check-equal? (int-average 0 2) 1)
18 | (check-equal? (int-average 4 6) 5)
19 | (check-equal? (int-average 1 1) 1)
20 | (check-equal? (int-average 1 2) 1)
21

Welcome to DrRacket, version 6.6 [3m].
Language: racket, with debugging; memory limit: 128 MB.
>

Use trace to help investigate / debug

fact.rkt - DrRacket

fact.rktv (define..)v w5 Check Syntax [« Debug @ Macro Stepper WPl Run > stop [
1 | #lang racket \
2 S
3 | (provide fact) ; this line "exports" fact
4
5 Rlrequire racket/trace) |
6" e Dt S S
AR H T HH P HH Y
8| ;; fact
- EHHHPHHHHAHHHHAHH HHHFHHHHHHHHHHHHHHHHH
10
11 | ;; fact: computes n!
12 | ;; inputs: n, a non-negative integer
13 | ;3 outputs: n!
14 | (define (fact N)
15 (if (= N 0)

Welcome to DrRacket, version 6.12 [3m].
sakkabouiy debugging; memory limit: 128 MB.

£ >(fact 3)

k1> (fact 2)
>(fact 1)
> (fact 0)

Determine language from source ¥

Q

13:2 41050 MB[| @

Separate tests from code

using provide and require

® O fact.rkt - DrRacket
factrktv (define ...)v O Debug @I Macro Stepper @Bl Run|p Stop
#lang racket
2
3 | (provide fact) ; this line "exports" fact
4
SAHHHHHHHH
6 |;; fact
IR HH |
8 ® O fact_tests.rkt - DrRacket
91 fa;t: computes n: _ _ fact_tests.rkt v (define ...)¥ -} @& Debug %Dﬂ Macro Stepper ﬁ"il Run D Stop i
10 | ;; inputs: n, a non—-negative 1integer
11 | ;; outputs: n! 1| #lang racket
12 | (define (fact N) 2 | (require rackunit) \\\\\~
13 (if (= N 9) BE) (require "fact.rkt") |
14 1 4
15 (x N (fact (=N 1))))) 5 | (check-equal? (fact @) 1)
6 | (check-equal? (fact 1) 1)
7 | (check-equal? (fact 3) 6)
8 | (check-equal? (fact 4) 24)
) 9 | (check-equal? (fact 5) 121)
\ Determine language from source ¥ 10

4

Determine language from source v 3:22 425.82 MB ﬁ% ©

A

https://www.teepublic.com/tote/2541248-funny-duck-billed-platypus-playing-tennis-cartoon

https://www.teepublic.com/tote/2541248-funny-duck-billed-platypus-playing-tennis-cartoon
https://en.wikipedia.org/wiki/File:Perry_Platypus.png

Racket:
Functions & Lists
(& Recursion)

Creating lists in Racket

syntax
what we write

printed representation
what Racket prints

semantics
what it means

> empty
empty () IE
(()}ist <valuer> ... <valueyx>) ?(élgit 2 3) T T N
'(<valuer> ... <valuen>) ?(2(§)3) v v
2 3
(cons <value> <list>) T(icgn;)l (list 2 3)) T 7 T T ‘ :\
v v v
] 2 3

Creating lists: let’s practice

write down the answers as either a drawing or a Racket expression

AESAEEAN
3 2 1
AESAEEAN
3 2 1

1. (list 32 1) < draw the picture

2. (cons 3 (list 2 1)) « draw the picture

3. ‘ ’ ‘ ._I_>ITN < write the expression (llSt 1 2)
M
1 2
4, (1) < write the expression that makes Racket display this (|IS t 1)

5. (list 3 (list 2 1) 0) « draw the picture

shbepteal

Full name Th. 10/4

Aside: we don’t actually need list!

list is “syntactic sugar” for one or more calls to cons

._+IN
3

o—>

N <o

(list 1 2 3)

(cons 1 (cons 2 (cons 3 empty)))

Accessing Racket lists

first

Accessing lists: let’s practice

Assume the variable L has the value '(1 2 3). Fill in the table.

result expression that uses L to compute result
1 (first L)
(2 3)

Accessing lists: let’s practice

Assume the variable L has the value '(1 2 3). Fill in the table.

result expression that uses L to compute result
1 (first L)

(2 3) (rest L)

2 (first (rest L))

'(3) (rest (rest L))

