

The pace of this class is…

6

12

18

24

1 2 3 4 5 6 7

way too  
slow

just right
way too  

fast

I’m learning a lot in CS 42.

strongly 
disagree

neither agree 
nor disagree

strongly 
agree

6

12

18

24

1 2 3 4 5 6 7

When it comes to workload, so far,  
this is my hardest course.

strongly 
disagree

neither agree 
nor disagree

strongly 
agree

6

12

18

24

1 2 3 4 5 6 7

Three kinds of work

In-class
Why? introduce new skills and concepts, provide context, discuss implications
How? lectures, small-group discussions, exercises

Assignments
Why? practice skills and concepts
How? usually by making things

Exams
Why? build deeper understanding of concepts
How? apply familiar concepts in new contexts

Help outside of class

Racket conditionals

idiom: if you have more than one condition, use cond

(if conditional-expr 
 true-expr 
 false-expr)

(cond [condition1 expr1]
 …
 [conditionn exprn]
 [else else-expr])

this is the most common form of cond

Racket: functions

(define (function-name parameter1 … parametern)
 body)

Write tests first!
using rackunit

Write tests first!
using rackunit

Use trace to help investigate / debug

Separate tests from code
using provide and require

https://www.teepublic.com/tote/2541248-funny-duck-billed-platypus-playing-tennis-cartoon

https://www.teepublic.com/tote/2541248-funny-duck-billed-platypus-playing-tennis-cartoon
https://en.wikipedia.org/wiki/File:Perry_Platypus.png

Racket: 
Functions & Lists  

(& Recursion)

Creating lists in Racket

syntax 
what we write

printed representation 
what Racket prints

semantics 
what it means

empty > empty
'()

(list <value1> ... <valueN>)
or
'(<value1> ... <valueN>)

> (list 2 3)
'(2 3)
> '(2 3)
'(2 3)

(cons <value> <list>) > (cons 1 (list 2 3))
'(1 2 3)

2 3

1 2 3

make an empty list

make a list with N values

add an element to the front of a list

write down the answers as either a drawing or a Racket expression

Creating lists: let’s practice

1. (list 3 2 1) ← draw the picture

2. (cons 3 (list 2 1)) ← draw the picture

3. ← write the expression

4. '(1) ← write the expression that makes Racket display this

5. (list 3 (list 2 1) 0) ← draw the picture

1 2

3 2 1

3 2 1

(list 1 2)

(list 1)

3 0

2 1

Full name Th. 10/4

Aside: we don’t actually need list!

(list 1 2 3)

is the same as

(cons 1 (cons 2 (cons 3 empty)))

list is “syntactic sugar” for one or more calls to cons

1 2 3

Accessing Racket lists

1 2 3

first rest

Accessing lists: let’s practice

Assume the variable L has the value '(1 2 3). Fill in the table.

result expression that uses L to compute result

1 (first L)

'(2 3)

2

'(3)

Accessing lists: let’s practice

Assume the variable L has the value '(1 2 3). Fill in the table.

result expression that uses L to compute result

1 (first L)

'(2 3) (rest L)

2 (first (rest L))

'(3) (rest (rest L))

