

Translate this table to a circuit

input		output			
x	y	a	b	c	d
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

> 靣 㔽
> Pill
> 3_{e}
（8）
（x）b
101
（x）c
（x）d
Full name
Th．9／20

Translate this table to a circuit

input		output			
x	y	a	b	c	d
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Full name
Th. 9/20

Levels of abstraction

Stored-program computers

Random-access memory (RAM)
Registers

1-bit memory: latches

Logic gates

Transistors / switches

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of problems

can computers solve?

Can combinational logic solve all the problems that a DFA can? How about a Turing Machine?
What counts as a computer?

Can we do this?

If we can't, then boolean functions aren't as powerful as DFAs.

Use minterm expansion!

(1) Write down the truth table for this DFA. The output of the function should be a 1 if it accepts; 0 if it rejects.
(2) Use minterm expansion to create the circuit from the table.

Impassible task!

 we cannot build a circuit far tin is D FA
Pass-through

I'm (not) pressing the button right now.
input 0
(D) output
input

output

Phase behavior: set

I (haven't yet) pressed the button. (toggle on)

Phase behavior: set / reset

I can toggle the button on and off.

Pass-through via set / reset

I'm (not) pressing the button right now.

Pass-through or set / reset

I can toggle between pass-through and remembering the state from a moment in time.

Random-access memory (RAM)

A 512K x 8 RAM (About 4.2 million bits)

A small piece of RAM

Interface: we can read or write one of four rows of memory, and each row stores three bits

A small piece of RAM

Implementation

A small piece of RAM

Addressing: select which "line"

A small piece of RAM

Write mode

A small piece of RAM

A small piece of RAM

Wire data bits to corresponding memory bits

A small piece of RAM

Wire data bits to corresponding memory bits

A small piece of RAM

Wire data bits to corresponding memory bits

What counts as a problem?

Decision problems on finite, bitstring inputs.

What kinds of problems

can computers solve?

Can sequential logic solve all the problems that a DFA can? How about a Turing Machine?
What counts as a computer?

