Sorting algorithms

Things to consider

Theory vs Practice — Algorithms vs Implementations
Theoretical best-case performance on worst-case input: n log n

Is the algorithm in-place?
Does it use space efficiently?

Is the algorithm adaptive?
Does it perform well when the data is already sorted?

What are we measuring / modeling / optimizing for?
comparisons vs swaps e time vs space vs energy vs codability

Re Slllts vote here: tinyurl.com/cs42sortdetective

B Algorithm 1 M Algorithm 2 [0 Algorithm 3 [Algorithm 4
30

20

10

Algorithm A Algorithm B Algorithm C Algorithm D

http://tinyurl.com/cs42sortdetective

alg. input math closed form asymptotic

sorted N—1 N-1 N(N .
A > 1 MEED o
antisorted =0 j=1¢+1 2
selection sory (2)
sorted T(l) — 0
N1 N
B antisorted T'(N) = N—|—2T(ﬂ) Og2() O(NlogN)
mgnge_sgéil)
sorted N N-=-2
C Y Y1 N(N—=1) O(N?)
antisorted =1 53=0
bubble sort (4)
sorted Z 1 N —1 O(N)
D v N(N —1)
antisorted 1 B O N2
inser)’ion sor)’ (3) ;; 2 ()

More fun with sorting

More ways to learn about sorting algorithms:
e On Wikipedia
e Using visualizations
e Using sonifications
e Using folk-dancification

https://en.wikipedia.org/wiki/Sorting_algorithm
http://www.sorting-algorithms.com/
https://www.youtube.com/watch?v=t8g-iYGHpEA
https://www.youtube.com/user/AlgoRythmics

