Sorting algorithms

Things to consider

Theory vs Practice — Algorithms vs Implementations
Theoretical best-case performance on worst-case input: n log n

Is the algorithm in-place?
Does it use space efficiently?

Is the algorithm adaptive?
Does it perform well when the data is already sorted?

What are we measuring / modeling / optimizing for?
comparisons vs swaps e time vs space vs energy vs codability



Re Slllts vote here: tinyurl.com/cs42sortdetective
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More fun with sorting

More ways to learn about sorting algorithms:
e On Wikipedia
e Using visualizations
e Using sonifications
e Using folk-dancification



https://en.wikipedia.org/wiki/Sorting_algorithm
http://www.sorting-algorithms.com/
https://www.youtube.com/watch?v=t8g-iYGHpEA
https://www.youtube.com/user/AlgoRythmics

