
Firstname Lastname T. 12 / 04

(Your response)

Does this code compile?
Assuming that GuardDog inherits from Dog, that its constructor
takes a String and an int, and that it has a growl method,
does the following code compile? Why or why not?

Dog d = new GuardDog("fluffy", 1);
d.growl();

interface 
what a piece of code can do

implementation 
how a piece of code works

type  
describe a set of supported operations

class  
implement a type’s operations

subtype  
add more operations to an existing type

subclass  
re-use/modify an existing implementation

inheritance  
usually extends interface and implementation

Declared type
When we declare a variable to be of a particular type, the
value of that variable must always be an instance of that
type.
If a variable has a type, then the value of that variable can
be used anywhere that type is expected.

void f(int x) {
 …
}

…

int value = 3;
f(value);

int y = value;

void g(Dog d) {
 …
}

…

Dog buddy = new Dog(…);
g(buddy);

Dog myDog = buddy;

value is an int

buddy is a Dogvalue is an int

buddy is a Dog

Subtyping: the “is-a” relationship
Implementing an interface establishes an is-a relationship.
Extending an interface establishes an is-a relationship.
Extending a class establishes an is-a relationship.

If we have the following declaration
 Type variable;
then:

• variable’s declared type is Type.
• variable “is a” Type.
• If Type is an interface, then variable 

“is” all the interfaces that Type transitively extends.
• If Type is a class, then variable 

“is” all the classes that Type transitively extends and 
“is” all the interfaces that Type transitively implements

Dog buddy;

buddy’s d.t. is Dog
buddy is a Dog

buddy is  
a Pet and
an Animal

Subtyping as substitutability
When we declare a variable to be of a particular type, we
say that the value of that variable should always be an
instance of that type or one of its subtypes.
If a variable has a type, then the value of that variable can
be used anywhere that type or one of its supertypes is
expected.

void g(Animal A) {
 …
}

…

Dog buddy = new Dog(…);
g(buddy);

Animal myDog = buddy;

Subtyping as substitutability
When we declare a variable to be of a particular type, we
say that the value of that variable should always be an
instance of that type or one of its subtypes.
If a variable has a type, then the value of that variable can
be used anywhere that type or one of its supertypes is
expected.

void g(Animal A) {
 …
}

…

Dog buddy = new Dog(…);
g(buddy);

Animal myDog = buddy;

subtype

supertype

is-a

Subtyping as substitutability
When we declare a variable to be of a particular type, we
say that the value of that variable should always be an
instance of that type or one of its subtypes.
If a variable has a type, then the value of that variable can
be used anywhere that type or one of its supertypes is
expected.

void g(Animal A) {
 …
}

…

Dog buddy = new Dog(…);
g(buddy);

Animal myDog = buddy; subtypesupertype
is-a

Declared type vs actual type

The type checker looks at the declared type 
(not the value) to see if method calls are legal.

When code runs, Java looks at the actual object (not
the claimed type) to choose the right method to run.

x.getSpots() is legal only if the declared type of  
x guarantees there's a getSpots method.

animal.speak() does different things, depending on 
what kind of object animal is currently referencing.

Does this type check in Java?

Inheritance Puzzles

Cat c = new Cat("Nala", 14);

✔

Does this type check in Java?

Inheritance Puzzles

Cat c = new Cat("Nala", 14);
c.speak();

✔ Meow

Does this type check in Java?

Inheritance Puzzles

Animal a = new Cat("Nala", 14);

✔

Does this type check in Java?

Inheritance Puzzles

Animal a = new Cat("Nala", 14);
a.speak();

✔ Meow

Does this type check in Java?

Inheritance Puzzles

Dog d = new Dalmatian("Pango", 3, 101);

✔

Does this type check in Java?

Inheritance Puzzles

Dalmatian d = new Dog("Pango", 101);

✘

Does this type check in Java?

Inheritance Puzzles

Dog d = new Dalmatian("Pango", 3, 101);
Dalmatian dm = d;

✘

Does this type check in Java?

Inheritance Puzzles

GuardDog gd = new GuardDog("fluffy", 1);
gd.growl();

✔

Does this type check in Java?

Inheritance Puzzles

Dog d = new GuardDog("fluffy", 1);
d.growl();

✘

Courtesy of Prof. Bassman

Graphs

A

C

B
D

nope nope yep!

upload.wikimedia.org/wikipedia/commons/4/45/Wikimedia_Commons_monthly_uploads_graph.png upload.wikimedia.org/wikipedia/commons/9/93/Giraffe_head_1a_(7110736311).jpg

http://upload.wikimedia.org/wikipedia/commons/4/45/Wikimedia_Commons_monthly_uploads_graph.png
http://upload.wikimedia.org/wikipedia/commons/9/93/Giraffe_head_1a_

Can you:
 start at point ,  
 cross every bridge only once,  
 and return to point ?

Koenigsberg, Map by Merian-Erben 1652
commons.wikimedia.org/wiki/File:Image-Koenigsberg,_Map_by_Merian-Erben_1652.jpg

The Seven Bridges of Königsberg

Leonard Euler

commons.wikimedia.org/wiki/File:Leonhard_Euler.jpg

No
A

A
C

B

D

A

We need a model

Koenigsberg, Map by Merian-Erben 1652
commons.wikimedia.org/wiki/File:Image-Koenigsberg,_Map_by_Merian-Erben_1652.jpg

A

C

B
D

A set of nodes/vertices (places), and a set of edges (links)

Graphs!

A

C

B
D

nodes

edge

Like what?
A node is …
An edge is…

Graphs
represent relationships

A

C

B
D

nodes

edge

Like Facebook
A node is a Facebook user
An edge is a “friendship”

www.mcdougallinteractive.com/wp-content/uploads/2013/02/facebook-graph-search-400x400-300x300.jpg

Graphs
represent relationships

http://www.mcdougallinteractive.com/wp-content/uploads/2013/02/facebook-graph-search-400x400-300x300.jpg

AAA

BBBBB

CC

DD

C

D

AAA

BBBBB

CC

DD

C

D

We can “traverse the edge” in both directions.

The relationship is “mutual”.

Undirected graph

A

C

B
D

← important vocabulary!

AAA

BBBBB

CC

DD

C

D

We can “traverse the edge” in both directions.

The relationship is “mutual”.

Undirected graph

A

C

B
D

C

B

B

A

BA

CB

B D

A D

D C

← important vocabulary!

Like Twitter
A node is a Twitter user
An edge is a “follow”

williamjturkel.files.wordpress.com/2011/08/fig-5-niche-twitter-followers-20110421.jpg

Graphs
represent relationships

http://williamjturkel.files.wordpress.com/2011/08/fig-5-niche-twitter-followers-20110421.jpg

Directed graph

edge  
“source”

edge  
“destination”

AAA

BBBBB

CC

DD

C

D

A

C

B
D

We can “traverse the edge” in one direction.

The relationship is “one way”.

← important vocabulary!

A

C

B
D

Directed graph

edge  
“source”

edge  
“destination”

C

B

B

A

BA

CB

B D

A D

D C

We can “traverse the edge” in one direction.

The relationship is “one way”.

← important vocabulary!

Like highways
A node is a city
An edge is a highway from one city to another

Graphs
represent relationships

upload.wikimedia.org/wikipedia/commons/4/45/LA-IE_Freeway_System.jpg

http://upload.wikimedia.org/wikipedia/commons/4/45/LA-IE_Freeway_System.jpg

Information (usually “cost”) associated with each edge

Weighted graph

A

C

B
D

100

90

85

10

1010

10

C

B

B

A

BA

CB

B D

A D

D C

10

10

100

10

10

85

90

← important vocabulary!

Like flights
A node is a city
An edge is a flight from one city to another

Graphs
represent relationships

www.expressjet.com/wp-content/uploads/2012/05/ExpressJet_UnitedSystem(February13).jpg

http://www.expressjet.com/wp-content/uploads/2012/05/ExpressJet_UnitedSystem

Information (usually “cost”) associated with each edge

Directed weighted graph

edge  
“source”

edge  
“destination”

C

B

B

A

BA

CB

B D

A D

D C

10

10

10

100

10

10

85

90

A

C

B
D

100

90

85

10

1010

10

edge  
“weight”

← important vocabulary!

Undirected Directed

Unweighted

Weighted

weights = distance, time, cost weights = distance, time, cost

facebook twitter

flightshighways

D’s neighbors

B’s neighbors

A’s neighbors

important vocabulary!

source destination

C

B

B

A

B D

A D

D C

10

100

10

85

90
A

C

B
D

100

90

85
10

10

weight

D has one adjacent edge.
C is adjacent to D. ←

← ← There are two paths
from A to D.

C is reachable from A.
←

Complete graph

A

C

B
D

complete not complete

A

C

B
D

There is an edge between each pair of nodes.

In other words, each node is adjacent to every other node.
To be true in a directed graph, the edges must go in both directions.

← important vocabulary!

There is a path between each pair of nodes.

In other words, each node is reachable from every other node.
If this is true in a directed graph, the graph is “strongly connected”.

Connected graph ← important vocabulary!

A

C

B
D

A

C

B
D

connected not connected

a sparse graph has few edges a dense graph has many edges
← ←

important vocabulary!

Cycle

6

4 7

10 29 42 63

3 26 39 56 72

cyclic
there may be

an infinite number of paths to a node

acyclic
there are  

a finite number of paths to a node

6

4 7

10 29 42 63

3 26 39 56 72

← important vocabulary!

We’ve seen graphs before!
a linked list is a graph; a tree is a graph

linked list
connected, directed, acyclic graph

6 7 63 72
37

19 51

10 29 42 63

3 39 56 72

tree
connected, directed, acyclic graph

