
“Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact
when debugging and maintenance are considered. We should forget
about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%."

—Don Knuth

Write the tabulation template for fib

Name

(your response)

Th. 11/8

make-change, infinite coins
Given a value and a set of coins, what is the minimum
number of coins required to sum to the value, assuming we
have an infinite number of each coin?

The longest-common substring of s1 and s2 is the longest
string that is a non-consecutive substring of both s1 and s2.

longest-common substring (LCS)

lcs('x', 'y') == 0

lcs('x', '') == 0

lcs('', 'x') == 0

lcs('car', 'cat') == 2

lcs('human', 'chimpanzee') == 4

How similar are these strings?

How many times does the platypus quack?

Theoretical tools: code → math

for (int i=0; i<N; i++) {
 for (int j=0; j<N; j++) {
 platypus.quack()
 }
}

How many times does the platypus quack?

Theoretical tools: code → math

for (int i=0; i<N; i++) {
 for j in range(N):
 platypus.quack()
 }
}

upper-bound  
(inclusive)

lower-bound  
(inclusive)

index

(implicit increment)

Theoretical tools: code → math
summations

summations

Theoretical tools: code → math

for (int i=0; i<N; i++) {
 for j in range(N):
 platypus.quack()
 }
}

N�1X

j=0

1

summations

Theoretical tools: code → math

N�1X

j=0

1

upper-bound  
(inclusive)

lower-bound  
(inclusive)

index

(implicit increment)

j cost
0 1
1 1
2 1
3 1

… …
N-2 1
N-1 1

N ∈O(N)

summations

Theoretical tools: code → math

i cost
1 1
2 1
3 1
4 1

… …
N-1 1

N 1
N ∈O(N)

summations

Theoretical tools: code → math

i cost
1 N
2 N
3 N
4 N

… …
N-1 N

N N
N2 ∈O(N2)

summations

Theoretical tools: code → math

i cost
1 1
2 2
3 3
4 4

… …
N-1 N-1

N N
∈O(N2)

How many times does the platypus quack?

Theoretical tools: code → math

sum 1,j=0 to N-1

code

math

Wolfram Alpha

closed form

asymptotic notation

N�1X

j=0

1

N

O(N)

for j in range(N):
 platypus.quack()

How many times does the platypus quack?

Theoretical tools: code → math

for i in range(N):
 for j in range(N):
 platypus.quack()
 }
}

How many times does the platypus quack?

Theoretical tools: code → math

N�1X

i=0

N�1X

j=0

1

sum (sum 1,j=0 to N-1),i=0 to N-1

N2

O(N2)

code

math

Wolfram Alpha

closed form

asymptotic notation

for i in range(N):
 for j in range(N):
 platypus.quack()
 }
}

How many times does the platypus quack?

Theoretical tools: code → math

for i in range(N):
 for j in range(i, N):
 platypus.quack()
 }
}

How many times does the platypus quack?

Theoretical tools: code → math

for i in range(N):
 for j in range(i, N):
 platypus.quack()
 }
}

sum (sum 1,j=i to N-1),i=0 to N-1

O(N2)

code

math

Wolfram Alpha

closed form

asymptotic notation

N�1X

i=0

N�1X

j=i

1

N(N + 1)

2

