

a unique path from root to every element

Trees

JI

QPONM T

LK

D

HF

SR

B

G

EC

A

U

root
(no parent)

height
length of longest path 
from root to leaf

leaves
(no children)

node
edge

Which of these are (not) trees? (And why?)Class Exercise—Which Are Trees?

BC

F

DE

A

BC

F

DE

A

BC

F

DE

A

BC

F

DE

A

BC

F

DE

A

BC

F

DE

A

10

✔ ✔ ✔

✘ ✘ ✘
a b c

fed

Ancestors

Descendants

subtree

Depth

Height

the length of the longest path from the root to a leaf

Tree height

19

10 29

3

19

10 29

3

19

10 29

3

19

10 29

3

h = 2 h = 1 h = 1 h = 0 h = -1 (!)

The height of an empty tree is -1.

3

10 29

39

42

7256

63

19 51

37

structure constraint: every node has at most two children

Binary trees

3

10 29

39

42

7256

63

19 51

37

Visit the root, then preorder traverse the left subtree, then preorder traverse the right subtree

Preorder traversal

4

3

2

5

1

6

7

8 10 11

9

3

10 29

39

42

7256

63

19 51

37

Inorder traverse the left subtree, then visit the root, then inorder traverse the right subtree

Inorder traversal

1

2

3

4

5

8

7

6 9 11

10

3

10 29

39

42

7256

63

19 51

37

Postorder traverse the left subtree, then postorder traverse the right subtree, then visit the root

Postorder traversal

1

2

4

3

11

10

6

5 7 8

9

3

10 29

39

42

7256

63

19 51

37

order constraint: every parent is greater than all the nodes in its left subtree and  
less than all the nodes in the right

Binary search trees (BSTs)

(unique) key
the value used for search

3

10 29

39

42

7256

63

19 51

37

structure constraint: every subtree is about the same size as its sibling

Balanced binary search trees

Perfect trees

• Most trees aren’t perfect (why not?)
• But perfect trees are useful for analyzing balanced trees.

structure: all leaves are at the same level and every level is full

BST algorithm: find

37

19 51

10 29 42 63

3 39 56 72

BST algorithm: find

Given a BST values and a number i:

find(i, values):

 If the tree is empty, return false.

 Let key be the value at the root of the tree.

 If key is i, return true.

 If i < key, call find on the left subtree.

 If i > key, call find on the right subtree.

BST algorithm: insert

Given a BST values and a number i:

insert(i, values):

 Look for i in values.

 Insert i as a leaf where it should be.

37

19 51

63

56 72

37

19 51

29 63

56 72

37

19 51

29 63

26 56 72

insert 29 insert 26

we’ll assume that i  
is not in the tree

qph.fs.quoracdn.net/main-qimg-88aaea5bcbfbdb3215063dfd7d4c113c

https://qph.fs.quoracdn.net/main-qimg-88aaea5bcbfbdb3215063dfd7d4c113c
https://qph.fs.quoracdn.net/main-qimg-88aaea5bcbfbdb3215063dfd7d4c113c

Designing and implementing a new data structure
Interface and implementation

• Interface
 Answers: what can this data structure do

• Implementation: encoding
Answers: how the structure is stored, using existing data structures

• Implementation: operations
Answers: how the structure provides its interface via  
algorithms over the encoding

It should be possible to replace the implementation  
without modifying the interface.

We’ll talk only about the interface for trees  
(but you have access to the code for the implementation).

Inductive data structure, manipulated via constructors, accessors, and operations

Our Racket trees: Interface

constructors 
put together

empty-tree

(make-leaf <key>)

(make-tree <key> <left> <right>)

accessors 
take apart

(empty-tree? <tree>)

(leaf? <tree>)

(root <tree>)

(left <tree>)

(right <tree>)

operations 
often recursive

(size <tree>)

(height <tree>)

(find <value> <tree>)

(insert <value> <tree>)

(traverse-inorder <tree>)  
(traverse-preorder <tree>)  
(traverse-postorder <tree>)

Our BSTs won’t be balanced.

What are some good test cases for trees?

ε k

TL

k k

TR TL

k

TR

Firstname Lastname

size

Th. 10 / 18

(Your response)

; the number of nodes in the tree
(define (size tree)

Firstname Lastname

; the number of nodes in the tree
(define (size tree)
 (if (empty-tree? tree)
 0
 (+ 1
 (size (left tree))
 (size (right tree)))))

size

Th. 10 / 18

Worst-case analysis
How bad can it get?

Given a collection of size N and an operation:
What’s the worst input for the operation?
How expensive is the operation, for that input? (cost = # of elements visited)

find insert min list elements  
in order

List O(n log n)
elements visited

Tree O(n log n)
elements visited

Binary search tree (BST) O(n) 
elements visited

balanced
Binary search tree (BST)

O(n) 
elements visited

For trees (including unbalanced BSTs), the worst-case
version of an N-element tree is a “stick” (i.e., a linked list).

Worst-case analysis
How bad can it get?

Given a collection of size N and an operation:
What’s the worst input for the operation?
How expensive is the operation, for that input? (cost = # of elements visited)

find insert min list elements  
in order

List O(n) 
elements visited

O(1)
elements visited

O(n) 
elements visited

O(n log n)
elements visited

Tree O(n) 
elements visited

O(1)
elements visited

O(n) 
elements visited

O(n log n)
elements visited

Binary search tree (BST) O(n) 
elements visited

O(n)
elements visited

O(n) 
elements visited

O(n) 
elements visited

balanced
Binary search tree (BST)

O(log n) 
elements visited

O(log n) 
elements visited

O(log n) 
elements visited

O(n) 
elements visited

For trees (including unbalanced BSTs), the worst-case
version of an N-element tree is a “stick” (i.e., a linked list).

1. Translate the base case(s), using specific input sizes
How many steps does this base case take?

2. Translate the recursive case(s), using input size N
Define T(N) recursively, in terms of smaller cost.

Analyze size, using a recurrence relation

T(N) = 1 + T(N-1) + 0
T(N) = 1 + 1 + T(N-2)
T(N) = 1 + 1 + 1 + T(N-3)
T(N) …
T(N) = 1 + 1 + 1 + … 1 + T(N-N)

= 1*1 + T(N-1)
= 2*1 + T(N-2)
= 3*1 + T(N-3)
…
= N*1 + T(N-N) = N ∈ O(N)

(define (size tree)
 (if (empty-tree? tree)
 0
 (+ 1 (size (left tree)) (size (right tree)))))

T(0) = 0

T(N) = 1 + T(N-1) + 0

For a given cost metric: additions; on the worst-case input: a stick

http://bit.ly/2dTUtZt

