


a unique path from root to every element
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Which of these are (not) trees? (And why?)Class Exercise—Which Are Trees?
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Ancestors



Descendants

subtree



Depth



Height



the length of the longest path from the root to a leaf

Tree height
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h = 2 h = 1 h = 1 h = 0 h = -1 (!)

The height of an empty tree is -1.
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structure constraint: every node has at most two children

Binary trees
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Visit the root, then preorder traverse the left subtree, then preorder traverse the right subtree

Preorder traversal
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Inorder traverse the left subtree, then visit the root, then inorder traverse the right subtree

Inorder traversal
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Postorder traverse the left subtree, then postorder traverse the right subtree, then visit the root

Postorder traversal
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order constraint: every parent is greater than all the nodes in its left subtree and  
less than all the nodes in the right 

Binary search trees (BSTs)

(unique) key 
the value used for search
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structure constraint: every subtree is about the same size as its sibling

Balanced binary search trees



Perfect trees

• Most trees aren’t perfect (why not?) 
• But perfect trees are useful for analyzing balanced trees.

structure: all leaves are at the same level and every level is full



BST algorithm: find
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BST algorithm: find

Given a BST values and a number i: 

find(i, values): 

   If the tree is empty, return false. 

   Let key be the value at the root of the tree. 

   If key is i, return true. 

   If i < key, call find on the left subtree. 

   If i > key, call find on the right subtree.



BST algorithm: insert

Given a BST values and a number i: 

insert(i, values): 

   Look for i in values. 

   Insert i as a leaf where it should be.

37

19 51

63

56 72

37

19 51

29 63

56 72

37

19 51

29 63

26 56 72

insert 29 insert 26

we’ll assume that i  
is not in the tree



qph.fs.quoracdn.net/main-qimg-88aaea5bcbfbdb3215063dfd7d4c113c

https://qph.fs.quoracdn.net/main-qimg-88aaea5bcbfbdb3215063dfd7d4c113c
https://qph.fs.quoracdn.net/main-qimg-88aaea5bcbfbdb3215063dfd7d4c113c


Designing and implementing a new data structure
Interface and implementation

• Interface 
 Answers: what can this data structure do 

• Implementation: encoding  
Answers: how the structure is stored, using existing data structures 

• Implementation: operations 
Answers: how the structure provides its interface via  
algorithms over the encoding 

It should be possible to replace the implementation  
without modifying the interface.

We’ll talk only about the interface for trees  
(but you have access to the code for the implementation).



Inductive data structure, manipulated via constructors, accessors, and operations

Our Racket trees: Interface

constructors 
put together

empty-tree

(make-leaf <key>)

(make-tree <key> <left> <right>)

accessors 
take apart

(empty-tree? <tree>)

(leaf? <tree>)

(root <tree>)

(left <tree>)

(right <tree>)

operations 
often recursive

(size <tree>)

(height <tree>)

(find <value> <tree>)

(insert <value> <tree>)

(traverse-inorder <tree>)  
(traverse-preorder <tree>)  
(traverse-postorder <tree>)

Our BSTs won’t be balanced.



What are some good test cases for trees?
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Firstname Lastname

size

Th. 10 / 18

(Your response)

; the number of nodes in the tree 
(define (size tree) 
 



Firstname Lastname

; the number of nodes in the tree 
(define (size tree) 
  (if (empty-tree? tree) 
    0 
    (+ 1  
       (size (left tree))  
      (size (right tree)))))

size

Th. 10 / 18



Worst-case analysis
How bad can it get?

Given a collection of size N and an operation: 
What’s the worst input for the operation? 
How expensive is the operation, for that input? (cost = # of elements visited)

find insert min list elements  
in order

List O(n log n) 
elements visited

Tree O(n log n) 
elements visited

Binary search tree (BST) O(n) 
elements visited

balanced 
Binary search tree (BST)

O(n) 
elements visited

For trees (including unbalanced BSTs), the worst-case 
version of an N-element tree is a “stick” (i.e., a linked list).



Worst-case analysis
How bad can it get?

Given a collection of size N and an operation: 
What’s the worst input for the operation? 
How expensive is the operation, for that input? (cost = # of elements visited)

find insert min list elements  
in order

List O(n) 
elements visited

O(1) 
elements visited

O(n) 
elements visited

O(n log n) 
elements visited

Tree O(n) 
elements visited

O(1) 
elements visited

O(n) 
elements visited

O(n log n) 
elements visited

Binary search tree (BST) O(n) 
elements visited

O(n) 
elements visited

O(n) 
elements visited

O(n) 
elements visited

balanced 
Binary search tree (BST)

O(log n) 
elements visited

O(log n) 
elements visited

O(log n) 
elements visited

O(n) 
elements visited

For trees (including unbalanced BSTs), the worst-case 
version of an N-element tree is a “stick” (i.e., a linked list).



1. Translate the base case(s), using specific input sizes 
How many steps does this base case take? 

2. Translate the recursive case(s), using input size N 
Define T(N) recursively, in terms of smaller cost.

Analyze size, using a recurrence relation

T(N) = 1 + T(N-1) + 0 
T(N) = 1 + 1 + T(N-2) 
T(N) = 1 + 1 + 1 + T(N-3) 
T(N) … 
T(N) = 1 + 1 + 1 + … 1 + T(N-N)

= 1*1 + T(N-1) 
= 2*1 + T(N-2) 
= 3*1 + T(N-3) 
… 
= N*1 + T(N-N) = N ∈ O(N) 

(define (size tree) 
  (if (empty-tree? tree) 
    0 
    (+ 1 (size (left tree)) (size (right tree)))))

T(0) = 0 

T(N) = 1 + T(N-1) + 0

For a given cost metric: additions; on the worst-case input: a stick

http://bit.ly/2dTUtZt

